Skip to main content
Log in

eNOS Deficient Mice Develop Progressive Cardiac Hypertrophy with Altered Cytokine and Calcium Handling Protein Expression

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Although studies have shown that endothelial nitric oxide synthase (eNOS) homozygous knockout mice (eNOS−/−) develop left ventricular (LV) hypertrophy, well compensated at least to 24 wks, uncertainty still exists as to the cardiac functional and molecular mechanistic consequences of eNOS deficiency at later time-points. To bridge the gap in existent data, we examined whole hearts from eNOS−/− and age-matched wild-type (WT) control mice ranging in age from 18 to 52 wks for macroscopic and microscopic histopathology, LV mRNA and protein expression using RNA Dot blots and Western blots, respectively, and LV function using isolated perfused work-performing heart preparations. Heart weight to body weight (HW/BW in mg/g) ratio increased significantly as eNOS−/− mice aged (82.2%, P < 0.001). Multi-focal replacement fibrosis and myocyte degeneration/death were first apparent in eNOS−/− mouse hearts at 40 wks. Progressive increases in LV atrial natriuretic factor (ANF) and α-skeletal actin mRNA levels both correlated significantly with increasing HW/BW ratio in aged eNOS−/− mice (r = 0.722 and r = 0.648, respectively; P < 0.001). At 52 wks eNOS−/− mouse hearts exhibited basal LV hypercontractility yet blunted beta adrenergic receptor (βAR) responsiveness that coincided with a significant reduction in the LV ratio of phospholamban to sarcoplasmic reticulum Ca2+-ATPase-2a protein levels and was preceded by a significant upregulation in LV steady-state mRNA and protein levels of the 28 kDa membrane-bound form of tumor necrosis factor-alpha. We conclude that absence of eNOS in eNOS−/− mice results in a progressive concentric hypertrophic cardiac phenotype that is functionally compensated with decreased βAR responsiveness, and is associated with a potential cytokine-mediated alteration of calcium handling protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang, P. L., Huang, Z., Mashimo, H., Bloch, K. D., Moskowitz, M. A., Bevan, J. A., & Fishman, M. C. (1995). Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature, 377, 239–242.

    Article  PubMed  CAS  Google Scholar 

  2. Shesely, E. G., Maeda, N., Kim, H. S., Desai, K. M., Krege, J. H., Laubach, V. E., Sherman, P. A., Sessa, W. C., & Smithies, O. (1996). Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proceedings of the National Academy of Sciences of the USA, 93, 13176–13181.

    Article  PubMed  CAS  Google Scholar 

  3. Yang, X. P., Liu, Y. H., Shesely, E. G., Bulagannawar, M., Liu, F., & Carretero, O. A. (1999). Endothelial nitric oxide gene knockout mice: cardiac phenotypes and the effect of angiotensin-converting enzyme inhibitor on myocardial ischemia/reperfusion injury. Hypertension, 34, 24–30.

    PubMed  CAS  Google Scholar 

  4. Ruetten, H., Dimmeler, S., Gehring, D., Ihling, C., & Zeiher, A. M. (2005). Concentric left ventricular remodeling in endothelial nitric oxide synthase knockout mice by chronic pressure overload. Cardiovascular Research, 66, 444–453.

    Article  PubMed  CAS  Google Scholar 

  5. Godecke, A., Heinicke, T., Kamkin, A., Kiseleva, I., Strasser, R. H., Decking, U. K., Stumpe, T., Isenberg, G., & Schrader, J. (2001). Inotropic response to beta-adrenergic receptor stimulation and anti-adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts. Journal of Physiology, 532, 195–204.

    Article  PubMed  CAS  Google Scholar 

  6. Gyurko, R., Kuhlencordt, P., Fishman, M. C., & Huang, P. L. (2000). Modulation of mouse cardiac function in vivo by eNOS and ANP. American Journal of Physiology–Heart and Circulatory Physiology, 278, H971–H981.

    PubMed  CAS  Google Scholar 

  7. Vandecasteele, G., Eschenhagen, T., Scholz, H., Stein, B., Verde, I., & Fischmeister, R. (1999). Muscarinic and beta-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nature Medicine, 5, 331–334.

    Article  PubMed  CAS  Google Scholar 

  8. Barouch, L. A., Cappola, T. P., Harrison, R. W., Crone, J. K., Rodriguez, E. R., Burnett, A. L., & Hare, J. M. (2003). Combined loss of neuronal and endothelial nitric oxide synthase causes premature mortality and age-related hypertrophic cardiac remodeling in mice. Journal of Molecular and Cellular Cardiology, 35, 637–644.

    Article  PubMed  CAS  Google Scholar 

  9. Barouch, L. A., Harrison, R. W., Skaf, M. W., Rosas, G. O., Cappola, T. P., Kobeissi, Z. A., Hobai, I. A., Lemmon, C. A., Burnett, A. L., O’Rourke, B., Rodriguez, E. R., Huang, P. L., Lima, J. A., Berkowitz, D. E., & Hare, J. M. (2002). Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature, 416, 337–339.

    PubMed  CAS  Google Scholar 

  10. Li, W., Mital, S., Ojaimi, C., Csiszar, A., Kaley, G., & Hintze, T. H. (2004). Premature death and age-related cardiac dysfunction in male eNOS-knockout mice. Journal of Molecular and Cellular Cardiology, 37, 671–680.

    Article  PubMed  CAS  Google Scholar 

  11. Colucci, W. S. (1997). Molecular and cellular mechanisms of myocardial failure. American Journal of Cardiology, 80, 15L–25L.

    Article  PubMed  CAS  Google Scholar 

  12. Siri, F. M., Nordin, C., Factor, S. M., Sonnenblick, E., & Aronson, R. (1989). Compensatory hypertrophy and failure in gradual pressure-overloaded guinea pig heart. American Journal of Physiology, 257, H1016–H1024.

    PubMed  CAS  Google Scholar 

  13. Feldman, A. M., Weinberg, E. O., Ray, P. E., & Lorell, B. H. (1993). Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circulation Research, 73, 184–192.

    PubMed  CAS  Google Scholar 

  14. Arai, M., Alpert, N. R., MacLennan, D. H., Barton, P., & Periasamy, M. (1993). Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circulation Research, 72, 463–469.

    PubMed  CAS  Google Scholar 

  15. Marks, A. R. (2003). A guide for the perplexed: Towards an understanding of the molecular basis of heart failure. Circulation, 107, 1456–1459.

    Article  PubMed  Google Scholar 

  16. Chu, G., Ferguson, D. G., Edes, I., Kiss, E., Sato, Y., & Kranias, E. G. (1998). Phospholamban ablation and compensatory responses in the mammalian heart. Annals of the New York Academy of Sciences, 853, 49–62.

    Article  PubMed  CAS  Google Scholar 

  17. Frank, K. F., Bolck, B., Brixius, K., Kranias, E. G., & Schwinger, R. H. (2002). Modulation of SERCA: Implications for the failing human heart. Basic Research Cardiology, 97(Suppl 1), I72–I78.

    Google Scholar 

  18. Koss, K. L., Grupp, I. L., & Kranias, E. G. (1997). The relative phospholamban and SERCA2 ratio: A critical determinant of myocardial contractility. Basic Research Cardiology, 92(Suppl 1), 17–24.

    Article  CAS  Google Scholar 

  19. Janczewski, A. M., Kadokami, T., Lemster, B., Frye, C. S., McTiernan, C. F., & Feldman, A. M. (2003). Morphological and functional changes in cardiac myocytes isolated from mice overexpressing TNF-alpha. American Journal of Physiology–Heart and Circulatory Physiology, 284, H960–H969.

    PubMed  CAS  Google Scholar 

  20. Kilickap, M., Gurlek, A., Dandachi, R., Dincer, I., Tutkak, H., & Oral, D. (2004). Tumour necrosis factor-alpha in diastolic dysfunction. Acta Cardiology, 59, 507–510.

    Article  Google Scholar 

  21. Kubota, T., Bounoutas, G. S., Miyagishima, M., Kadokami, T., Sanders, V. J., Bruton, C., Robbins, P. D., McTiernan, C. F., & Feldman, A. M. (2000). Soluble tumor necrosis factor receptor abrogates myocardial inflammation but not hypertrophy in cytokine-induced cardiomyopathy. Circulation, 101, 2518–2525.

    PubMed  CAS  Google Scholar 

  22. Matsumori, A. (1996). Cytokines in myocarditis and cardiomyopathies. Current Opinion in Cardiology, 11, 302–309.

    Article  PubMed  CAS  Google Scholar 

  23. Grell, M., Douni, E., Wajant, H., Lohden, M., Clauss, M., Maxeiner, B., Georgopoulos, S., Lesslauer, W., Kollias, G., Pfizenmaier, K., & Scheurich, P. (1995). The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell, 83, 793–802.

    Article  PubMed  CAS  Google Scholar 

  24. Mann, D. L. (2003). Stress-activated cytokines and the heart: From adaptation to maladaptation. Annual Review of Physiology, 65, 81–101.

    Article  PubMed  CAS  Google Scholar 

  25. Higuchi, Y., McTiernan, C. F., Frye, C. B., McGowan, B. S., Chan, T. O., & Feldman, A. M. (2004). Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-alpha-induced cardiomyopathy. Circulation, 109, 1892–1897.

    Article  PubMed  CAS  Google Scholar 

  26. Dibbs, Z. I., Diwan, A., Nemoto, S., DeFreitas, G., Abdellatif, M., Carabello, B. A., Spinale, F. G., Feuerstein, G., Sivasubramanian, N., & Mann, D. L. (2003). Targeted overexpression of transmembrane tumor necrosis factor provokes a concentric cardiac hypertrophic phenotype. Circulation, 108, 1002–1008.

    Article  PubMed  CAS  Google Scholar 

  27. Krege, J. H., Hodgin, J. B., Hagaman, J. R., & Smithies, O. (1995). A noninvasive computerized tail-cuff system for measuring blood pressure in mice. Hypertension, 25, 1111–1115.

    PubMed  CAS  Google Scholar 

  28. Athirakul, K., Kim, H. S., Audoly, L. P., Smithies, O., & Coffman, T. M. (2001). Deficiency of COX-1 causes natriuresis and enhanced sensitivity to ACE inhibition. Kidney International, 60, 2324–2329.

    Article  PubMed  CAS  Google Scholar 

  29. Grupp, I. L., Subramaniam, A., Hewett, T. E., Robbins, J., & Grupp, G. (1993). Comparison of normal, hypodynamic, and hyperdynamic mouse hearts using isolated work-performing heart preparations. American Journal of Physiology, 265, H1401–H1410.

    PubMed  CAS  Google Scholar 

  30. Jones, W. K., Grupp, I. L., Doetschman, T., Grupp, G., Osinska, H., Hewett, T. E., Boivin, G., Gulick, J., Ng, W. A., & Robbins, J. (1996). Ablation of the murine alpha myosin heavy chain gene leads to dosage effects and functional deficits in the heart. Journal of Clinical Investigation, 98, 1906–1917.

    Article  PubMed  CAS  Google Scholar 

  31. Chu, G., Li, L., Sato, Y., Harrer, J. M., Kadambi, V. J., Hoit, B. D., Bers, D. M., & Kranias, E. G. (1998). Pentameric assembly of phospholamban facilitates inhibition of cardiac function in vivo. Journal of Biological Chemistry, 273, 33674–33680.

    Article  PubMed  CAS  Google Scholar 

  32. Higuchi, Y., Chan, T. O., Brown, M., McTiernan, C. F., Jones, W. K., Feldman, A. M. (2006). Cardiac-specific blockade of NF-κB activation inhibits hypertrophy, restores Akt activity and improves survival in mice with TNF-α-induced heart failure. American Journal of Physiology–Heart and Circulatory Physiology, 290(2), H590–H598.

    Article  PubMed  CAS  Google Scholar 

  33. Flaherty, M. P., Takano, H., Murphree, S. G., Schultz, J. E., & Jones, W. K. (2000). Hypertensive-cardiac hypertrophy and induction of molecular markers in eNOS knockout mice. Absract. Journal of Molecular Cellular Cardiology, 32, A56–A16.

    Google Scholar 

  34. Sharp, B. R., Jones, S. P., Rimmer, D. M., & Lefer, D. J. (2002). Differential response to myocardial reperfusion injury in eNOS-deficient mice. American Journal of Physiology–Heart and Circulatory Physiology, 282, H2422–H2426.

    PubMed  CAS  Google Scholar 

  35. Boluyt, M. O., O’Neill, L., Meredith, A. L., Bing, O. H., Brooks, W. W., Conrad, C. H., Crow, M. T., & Lakatta, E. G. (1994). Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components. Circulation Research, 75, 23–32.

    PubMed  CAS  Google Scholar 

  36. Bubikat, A., De Windt, L. J., Zetsche, B., Fabritz, L., Sickler, H., Eckardt, D., Godecke, A., Baba, H. A., & Kuhn, M. (2005). Local atrial natriuretic peptide signaling prevents hypertensive cardiac hypertrophy in endothelial nitric-oxide synthase-deficient mice. Journal of Biological Chemistry, 280, 21594–21599.

    Article  PubMed  CAS  Google Scholar 

  37. Baker, D. L., Hashimoto, K., Grupp, I. L., Ji, Y., Reed, T., Loukianov, E., Grupp, G., Bhagwhat, A., Hoit, B., Walsh, R., Marban, E., & Periasamy, M. (1998). Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circulation Research, 83, 1205–1214.

    PubMed  CAS  Google Scholar 

  38. Ji, Y., Lalli, M. J., Babu, G. J., Xu, Y., Kirkpatrick, D. L., Liu, L. H., Chiamvimonvat, N., Walsh, R. A., Shull, G. E., & Periasamy, M. (2000). Disruption of a single copy of the SERCA2 gene results in altered Ca2+ homeostasis and cardiomyocyte function. Journal of Biological Chemistry, 275, 38073–38080.

    Article  PubMed  CAS  Google Scholar 

  39. Han, X., Kubota, I., Feron, O., Opel, D. J., Arstall, M. A., Zhao, Y. Y., Huang, P., Fishman, M. C., Michel, T., & Kelly, R. A. (1998). Muscarinic cholinergic regulation of cardiac myocyte ICa-L is absent in mice with targeted disruption of endothelial nitric oxide synthase. Proceedings of the National Academy of Sciences of the USA, 95, 6510–6515.

    Article  PubMed  CAS  Google Scholar 

  40. Chaudhri, B., Del Monte, F., Hajjar, R. J., & Harding, S. E. (2002). Interaction between increased SERCA2a activity and beta-adrenoceptor stimulation in adult rabbit myocytes. American Journal of Physiology–Heart and Circulatory Physiology, 283, H2450–H2457.

    PubMed  CAS  Google Scholar 

  41. Haas, E., Grell, M., Wajant, H., & Scheurich, P. (1999). Continuous autotropic signaling by membrane-expressed tumor necrosis factor. Journal of Biological Chemistry, 274, 18107–18112.

    Article  PubMed  CAS  Google Scholar 

  42. Finkel, M. S., Oddis, C. V., Jacob, T. D., Watkins, S. C., Hattler, B. G., & Simmons, R. L. (1992). Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science, 257, 387–389.

    Article  PubMed  CAS  Google Scholar 

  43. Bryant, D., Becker, L., Richardson, J., Shelton, J., Franco, F., Peshock, R., Thompson, M., & Giroir, B. (1998). Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation, 97, 1375–1381.

    PubMed  CAS  Google Scholar 

  44. Kubota, T., McTiernan, C. F., Frye, C. S., Slawson, S. E., Lemster, B. H., Koretsky, A. P., Demetris, A. J., & Feldman, A. M. (1997). Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circulation Research, 81, 627–635.

    PubMed  CAS  Google Scholar 

  45. Diwan, A., Dibbs, Z., Nemoto, S., DeFreitas, G., Carabello, B. A., Sivasubramanian, N., Wilson, E. M., Spinale, F. G., & Mann, D. L. (2004). Targeted overexpression of noncleavable and secreted forms of tumor necrosis factor provokes disparate cardiac phenotypes. Circulation, 109, 262–268.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH R01HL-63034 (WKJ) and AHA 9930195N (WKJ). We gratefully acknowledge Dr. Paul Huang for the gift of the eNOS−/− mice and Drs. E.G. Kranias and G. Chu for their consultation and assistance with the measurement of PLB and SERCA2a protein levels and discussion of these results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Keith Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flaherty, M.P., Brown, M., Grupp, I.L. et al. eNOS Deficient Mice Develop Progressive Cardiac Hypertrophy with Altered Cytokine and Calcium Handling Protein Expression. Cardiovasc Toxicol 7, 165–177 (2007). https://doi.org/10.1007/s12012-007-0028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-007-0028-y

Keywords

Navigation