Skip to main content

Advertisement

Log in

Pathophysiology and Current Clinical Management of Preeclampsia

  • Antihypertensive Agents: Mechanisms of Drug Action (ME Ernst, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Preeclampsia is characterized by blood pressure greater than 140/90 mmHg in the second half of pregnancy. This disease is a major contributor to preterm and low birth weight babies. The early delivery of the baby, which becomes necessary for maintaining maternal well-being, makes preeclampsia the leading cause for preterm labor and infant mortality and morbidity. Currently, there is no cure for this pregnancy disorder. The current clinical management of PE is hydralazine with labetalol and magnesium sulfate to slow disease progression and prevent maternal seizure, and hopefully prolong the pregnancy. This review will highlight factors implicated in the pathophysiology of preeclampsia and current treatments for the management of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• American College of O, Gynecologists, Task Force on Hypertension in P. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstetrics and gynecology. 2013;122(5):1122–31. doi:10.1097/01.AOG.0000437382.03963.88. This report highlights recommendations and guidelines for the management of patients with hypertension during and after pregnancy.

  2. Creasy RK, Resnik R, Greene MF, Iams JD, Lockwood CJ. Creasy and Resnik’s maternal-fetal medicine: principles and practice. Seventh edition ed.

  3. Duley L. Maternal mortality associated with hypertensive disorders of pregnancy in Africa, Asia, Latin America and the Caribbean. Br J Obstet Gynaecol. 1992;99(7):547–53.

    Article  CAS  PubMed  Google Scholar 

  4. Wallukat G, Homuth V, Fischer T, Lindschau C, Horstkamp B, Jupner A, et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Investig. 1999;103:945–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol. 2009;33(3):130–7. doi:10.1053/j.semperi.2009.02.010.

    Article  PubMed  Google Scholar 

  6. Khan KS, Wojdyla D, Say L, Gulmezoglu AM, Van Look PF. WHO analysis of causes of maternal death: a systematic review. Lancet. 2006;367(9516):1066–74. doi:10.1016/S0140-6736(06)68397-9.

    Article  PubMed  Google Scholar 

  7. Conrad KP, Benyo DF. Placental cytokines and the pathogenesis of preeclampsia. Am J Reprod Immunol. 1997;37(3):240–9.

    Article  CAS  PubMed  Google Scholar 

  8. Gilbert JS, Ryan MJ, LaMarca BB, Sedeek M, Murphy SR, Granger JP. Pathophysiology of hypertension during preeclampsia: linking placental ischemia with endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2008;294(2):H541–50. doi:10.1152/ajpheart.01113.2007.

    Article  CAS  PubMed  Google Scholar 

  9. Lamarca B. The role of immune activation in contributing to vascular dysfunction and the pathophysiology of hypertension during preeclampsia. Minerva Ginecol. 2010;62(2):105–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsubara K, Matsubara Y, Hyodo S, Katayama T, Ito M. Role of nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. J Obstet Gynaecol Res. 2010;36(2):239–47. doi:10.1111/j.1447-0756.2009.01128.x.

    Article  CAS  PubMed  Google Scholar 

  11. Noris M, Perico N, Remuzzi G. Mechanisms of disease: pre-eclampsia. Nat Clin Pract Nephrol. 2005;1(2):98–114; quiz 20. doi:10.1038/ncpneph0035.

    Article  CAS  PubMed  Google Scholar 

  12. Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005;308(5728):1592–4. doi:10.1126/science.1111726.

    Article  CAS  PubMed  Google Scholar 

  13. Sandrim VC, Montenegro MF, Palei AC, Metzger IF, Sertorio JT, Cavalli RC, et al. Increased circulating cell-free hemoglobin levels reduce nitric oxide bioavailability in preeclampsia. Free Radic Biol Med. 2010;49(3):493–500. doi:10.1016/j.freeradbiomed.2010.05.012.

    Article  CAS  PubMed  Google Scholar 

  14. Amaral LM, Palei AC, Sandrim VC, Luizon MR, Cavalli RC, Duarte G, et al. Maternal iNOS genetic polymorphisms and hypertensive disorders of pregnancy. J Hum Hypertens. 2012;26(9):547–52. doi:10.1038/jhh.2011.65.

    Article  CAS  PubMed  Google Scholar 

  15. • Roberts JM, Gammill HS. Preeclampsia: recent insights. Hypertension. 2005;46(6):1243-9. doi:10.1161/01.HYP.0000188408.49896.c5. The review highlights valuable insights into pathophysiology that could guide ongoing clinical trials.

  16. Granger JP. Inflammatory cytokines, vascular function, and hypertension. American journal of physiology. Regulatory, integrative and comparative physiology. 2004;286(6):R989–90. doi:10.1152/ajpregu.00157.2004.

    Article  CAS  PubMed  Google Scholar 

  17. Granger JP, Alexander BT, Llinas MT, Bennett WA, Khalil RA. Pathophysiology of preeclampsia: linking placental ischemia/hypoxia with microvascular dysfunction. Microcirculation. 2002;9(3):147–60. doi:10.1038/sj.mn.7800137.

    Article  CAS  PubMed  Google Scholar 

  18. Sankaralingam S, Arenas IA, Lalu MM, Davidge ST. Preeclampsia: current understanding of the molecular basis of vascular dysfunction. Expert Rev Mol Med. 2006;8(3):1–20. doi:10.1017/S1462399406010465.

    Article  PubMed  Google Scholar 

  19. Redman CW, Sargent IL. Immunology of pre-eclampsia. Am J Reprod Immunol. 2010;63(6):534–43. doi:10.1111/j.1600-0897.2010.00831.x.

    Article  CAS  PubMed  Google Scholar 

  20. Lamarca B, Cornelius D, Wallace K. Elucidating immune mechanisms causing hypertension during pregnancy. Physiology. 2013;28:225–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Borzychowski A, Sargent I, Redman C. Inflammation and pre-eclampsia. Semin Fetal Neonatal Med. 2006;11(5):309–16.

    Article  CAS  PubMed  Google Scholar 

  22. LaMarca BD, Ryan MJ, Gilbert JS, Murphy SR, Granger JP. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr Hypertens Rep. 2007;9(6):480–5.

    Article  CAS  PubMed  Google Scholar 

  23. • Murphy SR, LaMarca BB, Cockrell K, Granger JP. Role of endothelin in mediating soluble fms-like tyrosine kinase 1-induced hypertension in pregnant rats. Hypertension. 2010;55(2):394–8. doi:10.1161/HYPERTENSIONAHA.109.141473. The study shows the important role of sFlt-1 to induce PE-like syndrome through nitric oxide and endothelin-1 pathways.

  24. Murphy SR, LaMarca BB, Parrish M, Cockrell K, Granger JP. Control of soluble fms-like tyrosine-1 (sFlt-1) production response to placental ischemia/hypoxia: role of tumor necrosis factor-alpha. American journal of physiology. Regulatory, integrative and comparative physiology. 2013;304(2):R130–5. doi:10.1152/ajpregu.00069.2012.

    Article  CAS  PubMed  Google Scholar 

  25. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58. doi:10.1172/JCI17189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dechend R, Muller D, Wallukat G, Homuth V, Krause M, Dudenhausen J, et al. AT1 receptor agonistic antibodies, hypertension, and preeclampsia. Semin Nephrol. 2004;24(6):571–9.

    Article  CAS  PubMed  Google Scholar 

  27. •• LaMarca B, Wallace K, Granger J. Role of angiotensin II type I receptor agonistic autoantibodies (AT1-AA) in preeclampsia. Current Opinions in Pharmacology. 2011;11(2):175–9. This review discusses the potential role of the AT1-AA in mediating hypertension during pregnancy.

  28. Noris M, Todeschini M, Cassis P, Pasta F, Cappellini A, Bonazzola S, et al. L-arginine depletion in preeclampsia orients nitric oxide synthase toward oxidant species. Hypertension. 2004;43(3):614–22. doi:10.1161/01.HYP.0000116220.39793.c9.

    Article  CAS  PubMed  Google Scholar 

  29. Eleuterio NM, Palei AC, Rangel Machado JS, Tanus-Santos JE, Cavalli RC, Sandrim VC. Relationship between adiponectin and nitrite in healthy and preeclampsia pregnancies. Clinica chimica acta; international journal of clinical chemistry. 2013;423:112–5. doi:10.1016/j.cca.2013.04.027.

  30. Sandrim VC, Palei AC, Metzger IF, Cavalli RC, Duarte G, Tanus-Santos JE. Interethnic differences in ADMA concentrations and negative association with nitric oxide formation in preeclampsia. Clinica chimica acta; international journal of clinical chemistry. 2010;411(19–20):1457–60. doi:10.1016/j.cca.2010.05.039.

  31. Murphy SR, LaMarca B, Cockrell K, Arany M, Granger JP. L-arginine supplementation abolishes the blood pressure and endothelin response to chronic increases in plasma sFlt-1 in pregnant rats. American journal of physiology. Regulatory, integrative and comparative physiology. 2012;302(2):R259–63. doi:10.1152/ajpregu.00319.2011.

    Article  CAS  PubMed  Google Scholar 

  32. Perez-Sepulveda A, Torres M, Khoury M, Illanes S. Innate immune system and preeclampsia. Front Immunol. 2014;5:244.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dhillion P, Wallace K, Scott J, Herse F, Heath J, Moseley J, et al. IL-17 mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am J Physiol Regul Integr Comp Physiol. 2012;303(4):R353–R8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. LaMarca B, Alexander B, Gilbert J, Ryan M, Sedeek M, Murphy S, et al. Pathophysiology of hypertension in response to placental ischemia during pregnancy: a central role for endothelin? Gender Medicine. 2008;5:S133–S8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wallace K, Novotny S, Heath J, Moseley J, Martin J, Owens M, et al. Hypertension in response to CD4+ T cells from reduced uterine perfusion pregnant rats is associated with activation of the endothelin-1 system. Am J Physiol Regul Integr Comp Physiol. 2012;303(2):R144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Raijmakers M, Dechend R, Poston L. Oxidative stress and preeclampsia: rationale for antioxidant clinical trials. Hypertension. 2004;44:374–80.

    Article  CAS  PubMed  Google Scholar 

  37. Redman C, Sargent I. Placental debris, oxidative stress and pre-eclampsia. Placenta. 2000;21(7):597–602.

    Article  CAS  PubMed  Google Scholar 

  38. Wallace K, Cornelius D, Scott J, Heath J, Moseley J, Chatman K, et al. CD4+ T cells are important mediators of oxidative stress that cause hypertension in response to placental ischemia. Hypertension. 2014;64(5):1151–8. doi:10.1161/HYPERTENSIONAHA.114.03590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Walsh S. Obesity: a risk factor for preeclampsia. Trends in Endocrinology & Metabolism. 2007;18(10):365–70.

    Article  CAS  Google Scholar 

  40. Spradley F, Palei A, Granger J. Increased risk for the development of preeclampsia in obese pregnancies: weighing in on the mechanisms. Am J Physiol Regul Integr Comp Physiol. 2015;309(11):R1326–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Villa P, Marttinen P, Gillberg J, Lokki A, Majander K, Orden M, et al. Cluster analysis to estimate the risk of preeclampsia in the high-risk prediction and prevention of preeclampsia and intrauterine growth restriction (PREDO) study. PLoS One. 2017;12(3):e0174399.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bartsch E, Medcalf K, Park A, Ray J, Group HRoP-eI. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ. 2016;353:i1753.

  43. Spradley F, Palei A, Granger J. Immune mechanisms linking obesity and preeclampsia. Biomol Ther. 2015;5:3142–76.

    CAS  Google Scholar 

  44. Womack J, Tien P, Feldman J, Shin J, Fennie K, Anastos K, et al. Obesity and immune cell counts in women. Metabolism. 2007;56(7):998–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aye I, Lager S, Ramirez V, Gaccioli F, Dudley D, Jasson T, et al. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways. Biol Reprod. 2014;90(6):129.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zavalza-Gomez A. Obesity and oxidative stress: a direct link to preeclampsia? Arch Gyneccol Obstet. 2011;283(3):415–22.

    Article  CAS  Google Scholar 

  47. Saben J, Lindsey F, Zhong Y, Thakali K, Badger T, Andres A, et al. Maternal obesity is associated with a lipotoxic placental environment. Placenta. 2014;35:171–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Costa R, Hoshida M, Alves E, Zugaib M, Francisco R. Preeclampsia and superimposed preeclampsia: the same disease? The role of angiogenic biomarkers. Hypertension in Pregnancy. 2016;35(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  49. Jensen D, Damm P, Moelsted-Pedersen L, Ovesen P, Westergaard J, Moeller M, et al. Outcomes in type 1 diabetic pregnancies: a nationwide, population-based study. Diabetes Care. 2004;27(12):2819–23.

    Article  PubMed  Google Scholar 

  50. Persson M, Norman M, Hanson U. Obstetric and perinatal outcomes in type 1 diabetic pregnancies: a large, population-based study. Diabetes Care. 2009;32(11):2005–9.

  51. Knight K, Thornburg L, Pressman E. Pregnancy outcomes in type 2 diabetic patients as compared with type 1 diabetic patients and nondiabetic controls. J Reprod Med. 2012;57(9–10):397–404.

    PubMed  Google Scholar 

  52. Groen B, Links T, van den Berg P, Hellinga M, Moerman S, Visser G, et al. Similar adverse pregnancy outcome in native and nonnative Dutch women with pregestational type 2 diabetes: a multicentre retrospective study. ISRN Obstet Gynecol. 2013;2013:361435.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Weissgerber T, Mudd L. Preeclampsia and diabetes. Curr Diab Rep. 2015;15(3):579.

    Article  PubMed Central  Google Scholar 

  54. Nunemaker C. Considerations for defining cytokine dose, duration and milieu that are appropriate for modeling chronic low-grade inflammation in type 2 diabetes. J Diabetes Res. 2016;2016:2846570.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Scioscia M, Gumaa K, Rademacher T. The link between insulin resistance and preeclampsia: new perspective. J Reprod Immunol. 2009;82(2):100–5.

    Article  CAS  PubMed  Google Scholar 

  56. Guimaraes M, Brandao A, Rezende C, Cabral A, Brum A, Leite H, et al. Assessment of endothelial function in pregnant women with pre-eclampsia and gestational diabetes mellitus by flow-mediated dilation of brachial artery. Arch Gyneccol Obstet. 2014;290(3):441–7.

    Article  CAS  Google Scholar 

  57. Conti E, Zezza L, Ralli E, Caserta D, Musumeci M, Moscarini M, et al. Growth factors in preeclampsia: a vascular disease model. A failed vasodilation and angiogenic challenge from pregnancy onwards? Cytokine Growth Factor Rev. 2013;24(5):411–25.

    Article  CAS  PubMed  Google Scholar 

  58. Karacay O, Sepici-Dincel A, Karcaaltincaba D, Sahin D, Yalvac S, Akyol M, et al. A quantitative evaluation of total antioxidant status and oxidative stress markers in preeclampsia and gestational diabetic patients in 24-36 weeks gestation. Diabetes Res Clin Pract. 2010;89(3):231–8.

    Article  CAS  PubMed  Google Scholar 

  59. Clowse M, Jamison M, Myers E, James A. National study of medical complications in SLE pregnancies. Arthritis Rheum. 2006;54(S9):S263.

    Google Scholar 

  60. Clark C, Spitzer K, Nadler J, Laskin C. Preterm deliveries in women with systemic lupus erythematosus. J Rheumatol. 2003;30(10):2127–32.

    PubMed  Google Scholar 

  61. Emerudh J, Berg G, Mjosberg J. Regulatory T helper cells in pregnancy and their roles in systemic versus local immune tolerance. Am J Reprod Immunol. 2011;66(Suppl 1):31–43.

    Article  Google Scholar 

  62. Cornelius D, Amaral L, Harmon A, Wallace K, Thomas A, Campbell N, et al. An increased population of regulatory T cells improves the pathophysiology of placental ischemia in a rat model of preeclampsia. Am J Physiol Regul Integr Comp Physiol. 2015;309(8):R884–R91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Prins J, Boelens H, Heimweg J, Van der Heide S, Dubois A, Van Oosterhout A, et al. Preeclampsia is associated with lower percentages of regulatory T cells in maternal blood. Hypertension in Pregnancy. 2009;28:300–11.

    Article  PubMed  Google Scholar 

  64. Gluhovschi C, Gluhovschi G, Petrica L, Velciov S, Gluhovschi A. Pregnancy associated with systemic lupus wrythematosus: immune tolerance in pregnancy and its deficiency in systemic lupus erythematosus—an immunological dilemma. J Immunol Res. 2015;2015(241547).

  65. Ulcova-Gallova Z, Mockova A, Cedikova M. Screening tests of reproductive immunology in systemic lupus erythematosus. Autoimmune Diseases. 2012;2012:812138.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hayslett J. The effect of systemic lupus erythematosus on pregnancy and pregnancy outcome. Am J Reprod Immunol. 1992;28(3–4):199–204.

    Article  CAS  PubMed  Google Scholar 

  67. • Guillemette L, Lacroix M, Allard C, Patenaude J, Battista M, Doyon M et al. Preeclampsia is associated with an increased pro-inflammatory profile in newborns. J Reprod Immunol. 2015;112:111-4. The study shows that newborns from mothers diagnosed with PE have higher levels of TNFα at birth.

  68. • Nomura Y, John R, Janssen A, Davey C, Finik J, Buthmann J et al. Neurodevelopmental consequences in offspring of mothers with preeclampsia during pregnancy: underlying biological mechanism via imprinting genes. Arch Gyneccol Obstet. 2017;295(6):1319-29. This recent review attempts to show new evidence for imprinting gene dysregulation caused by hypertension and that could explain the link between preeclampsia and neurocognitive problems in offspring.

  69. Too GT, Hill JB. Hypertensive crisis during pregnancy and postpartum period. Semin Perinatol. 2013;37(4):280–7. doi:10.1053/j.semperi.2013.04.007.

    Article  PubMed  Google Scholar 

  70. ��• Owens MY, Martin JN, Jr., Wallace K, Keiser SD, Parrish MR, Tam Tam KB et al. Postpartum thrombotic microangiopathic syndrome. Transfusion and apheresis science: official journal of the World Apheresis Association: official journal of the European Society for Haemapheresis. 2013;48(1):51-7. doi:10.1016/j.transci.2012.05.016. This study reports an important patient case and discusses about the early recognition of thrombotic thrombocytopenic purpura for the appropriate treatment.

  71. Committee on Obstetric P. Committee Opinion No. 623: Emergent therapy for acute-onset, severe hypertension during pregnancy and the postpartum period. Obstet Gynecol 2015;125(2):521–525. doi:10.1097/01.AOG.0000460762.59152.d7.

Download references

Acknowledgements

This work was funded by the NIH grants HL105324 and HD067541-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babbette LaMarca.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Antihypertensive Agents: Mechanisms of Drug Action

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaral, L.M., Wallace, K., Owens, M. et al. Pathophysiology and Current Clinical Management of Preeclampsia. Curr Hypertens Rep 19, 61 (2017). https://doi.org/10.1007/s11906-017-0757-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-017-0757-7

Keywords

Navigation