Skip to main content

Advertisement

Log in

Global Updates on Cardiovascular Disease Mortality Trends and Attribution of Traditional Risk Factors

  • Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The last 2–3 decades have witnessed a decline in age-standardized cardiovascular mortality rates in high-income regions, whereas this has only slightly decreased or even increased in most of the low- and middle-income countries. A systematic comparison of global CVD mortality by regions attributable to various modifiable risk factors such as diabetes, obesity, hypertension, poor diet, and physical inactivity is not available.

Recent Findings

We present a summary of time trends and heterogeneity in the distribution of global CVD mortality and the attribution of risk factors between 1990 and 2017 using the Global Burden of Disease (GBD) 2017 study. Globally, an estimated ~ 17.8 million (233.1 per 100,000) people died of CVD in 2017. The rate of CVD death was decreased in high-income countries (1990: 271.8 (95% UI (uncertainty interval), 270.9–273.5); 2017: 128.5 (95% UI, 126.4–130.7) per 100,000)) whereas it remained the same in lower- and middle-income countries (1990: 368.2 (95% UI, 335.6–383.3); 2017: 316.9 (95% UI, 307.0–325.5) per 100,000). Among the various traditional risk factors, high systolic blood pressure, unhealthy diet, high fasting plasma glucose, and high low-density lipoprotein levels were attributed to most of the CVD death and disability-adjusted life year lost. We also observed gender variations in tobacco and increased alcohol consumption. In addition to the traditional risk factors, poor air quality is associated with increased CVD burden in developing countries.

Summary

Surveillance, country-specific guidelines, evidence-based policies, reinforcement of multisectoral health systems, and innovative solutions are urgently needed in resource-challenged settings to curb CVD risk factors and overall burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NCD:

Non-communicable diseases

CVD:

Cardiovascular diseases

HIC:

High-income countries

LMIC:

Low-middle income countries

WHO:

World Health Organization

GBD:

Global Burden of Diseases

UI:

Uncertainty intervals

DALYs:

Disability-adjusted life years

CRA:

Comparative risk assessment

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. WHO: Health situation and trend assessment. http://www.searo.who.int/entity/health_situation_trends/data/ncd_ncd-deaths/en/. Accessed on 3/11/2019.

  2. •• James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990&2013;2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858. https://doi.org/10.1016/S0140-6736(18)32279-7. Provides comprehensive updates on global disease trends.

    Article  Google Scholar 

  3. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1151–210. https://doi.org/10.1016/S0140-6736(17)32152-9.

    Article  Google Scholar 

  4. GBD 2016 DALYs, HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1260–344. https://doi.org/10.1016/S0140-6736(17)32130-X.

    Article  Google Scholar 

  5. GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1345–422. https://doi.org/10.1016/S0140-6736(17)32366-8.

    Article  Google Scholar 

  6. Omran AR. The epidemiologic transition: a theory of the epidemiology of population change. 1971. The Milbank quarterly. 2005;83(4):731–57. https://doi.org/10.1111/j.1468-0009.2005.00398.x.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gulland A. Global life expectancy increases by five years.BMJ (Clinical research ed). 2016;353:i2883. https://doi.org/10.1136/bmj.i2883.

  8. • NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet (London, England). 2016;387(10027):1513–30. https://doi.org/10.1016/S0140-6736(16)00618-8. Provides comprehensive updates on global diabetes disease trends.

    Article  Google Scholar 

  9. International Diabetes Federation. IDF Diabetes Atlas, 8th edn. Brussels, Belgium: International Diabetes Federation, 2017 http://www.diabetesatlas.org.[accessed on 3/25/2019].

  10. Siu AL, U S Preventive Services Task Force. Screening for abnormal blood glucose and type 2 diabetes mellitus: US Preventive Services Task Force recommendation statement. Ann Intern Med. 2015;163(11):861–8.

    Article  Google Scholar 

  11. Ford ES, Capewell S. Proportion of the decline in cardiovascular mortality disease due to prevention versus treatment: public health versus clinical care. Annu Rev Public Health. 2011;32:5–22. https://doi.org/10.1146/annurev-publhealth-031210-101211.

    Article  PubMed  Google Scholar 

  12. Mudaliar U, Zabetian A, Goodman M, Echouffo-Tcheugui JB, Albright AL, Gregg EW, et al. Cardiometabolic risk factor changes observed in diabetes prevention programs in US settings: a systematic review and meta-analysis. PLoS Med. 2016;13(7):e1002095. https://doi.org/10.1371/journal.pmed.1002095.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pastakia SD, Pekny CR, Manyara SM, Fischer L. Diabetes in sub-Saharan Africa - from policy to practice to progress: targeting the existing gaps for future care for diabetes. Diabetes Metab Syndr Obes. 2017;10:247–63. https://doi.org/10.2147/DMSO.S126314.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Skyler JS, Bergenstal R, Bonow RO, Buse J, Deedwania P, Gale EAM, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials. A position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the. American Heart Association. 2009;32(1):187–92. https://doi.org/10.2337/dc08-9026%JDiabetesCare.

  15. Saiz LC, Gorricho J, Garjón J, Celaya MC, Erviti J, Leache L. Blood pressure targets for the treatment of people with hypertension and cardiovascular disease. Cochrane Database Syst Rev. 2018;7. https://doi.org/10.1002/14651858.CD010315.pub3.

  16. Ali MK, Singh K, Kondal D, Devarajan R, Patel SA, Shivashankar R, et al. Effectiveness of a multicomponent quality improvement strategy to improve achievement of diabetes care goals: a randomized, controlled trial multicomponent quality improvement strategy to improve diabetes care goals. Ann Int Med. 2016;165(6):399–408. https://doi.org/10.7326/M15-2807.

    Article  PubMed  Google Scholar 

  17. Ko GT, So W-Y, Tong PC, Le Coguiec F, Kerr D, Lyubomirsky G, et al. From design to implementation--the Joint Asia Diabetes Evaluation (JADE) program: a descriptive report of an electronic web-based diabetes management program. BMC Med Inform Decis Mak. 2010;10:26. https://doi.org/10.1186/1472-6947-10-26.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134(6):441–50. https://doi.org/10.1161/CIRCULATIONAHA.115.018912.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang Z, Chen Z, Zhang L, Wang X, Hao G, Zhang Z, et al. Status of hypertension in China: results from the China hypertension survey, 2012-2015. Circulation. 2018;137(22):2344–56. https://doi.org/10.1161/circulationaha.117.032380.

    Article  PubMed  Google Scholar 

  20. Gupta R, Gaur K, Ram SCV. Emerging trends in hypertension epidemiology in India. J Hum Hypertens. 2018. https://doi.org/10.1038/s41371-018-0117-3.

  21. Shah N, Shah Q, Shah AJ. The burden and high prevalence of hypertension in Pakistani adolescents: a meta-analysis of the published studies. Archives of public health. 2018;76:20. https://doi.org/10.1186/s13690-018-0265-5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Islam JY, Zaman MM, Haq SA, Ahmed S, Al-Quadir Z. Epidemiology of hypertension among Bangladeshi adults using the 2017 ACC/AHA Hypertension Clinical Practice Guidelines and Joint National Committee 7 Guidelines. J Hum Hypertens. 2018;32(10):668–80. https://doi.org/10.1038/s41371-018-0087-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jafar TH, Islam M, Bux R, Poulter N, Hatcher J, Chaturvedi N, et al. Cost-effectiveness of community-based strategies for blood pressure control in a low-income developing country. Circulation. 2011;124(15):1615–25. https://doi.org/10.1161/CIRCULATIONAHA.111.039990.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Neupane D, McLachlan CS, Mishra SR, Olsen MH, Perry HB, Karki A, et al. Effectiveness of a lifestyle intervention led by female community health volunteers versus usual care in blood pressure reduction (COBIN): an open-label, cluster-randomised trial. Lancet Glob Health. 2018;6(1):e66–73.

    Article  Google Scholar 

  25. Bobrow K, Farmer AJ, Springer D, Shanyinde M, Yu L-M, Brennan T, et al. Mobile phone text messages to support treatment adherence in adults with high blood pressure (SMS-text adherence support [StAR]). Circulation. 2016;133(6):592–600. https://doi.org/10.1161/CIRCULATIONAHA.115.017530.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vargas G, Cajita MI, Whitehouse E, Han H-R. Use of short messaging service for hypertension management: a systematic review. J Cardiovasc Nurs. 2017;32(3):260–70. https://doi.org/10.1097/JCN.0000000000000336.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hyseni L, Elliot-Green A, Lloyd-Williams F, Kypridemos C, O'Flaherty M, McGill R, et al. Systematic review of dietary salt reduction policies: evidence for an effectiveness hierarchy? PloS One. 2017;12(5):e0177535-e. https://doi.org/10.1371/journal.pone.0177535.

    Article  CAS  Google Scholar 

  28. Laatikainen T, Critchley J, Vartiainen E, Salomaa V, Ketonen M, Capewell S. Explaining the decline in coronary heart disease mortality in Finland between 1982 and 1997. Am J Epidemiol. 2005;162(8):764–73. https://doi.org/10.1093/aje/kwi274.

    Article  PubMed  Google Scholar 

  29. Ezoe S, Noda H, Akahane N, Sato O, Hama T, Miyata T, et al. Trends in policy on the prevention and control of non-communicable diseases in Japan. Health Syst Reform. 2017;3(4):268–77. https://doi.org/10.1080/23288604.2017.1347125.

    Article  PubMed  Google Scholar 

  30. Uzoigwe JC, Prum T, Bresnahan E, Garelnabi M. The emerging role of outdoor and indoor air pollution in cardiovascular disease. N Am J Med Sci. 2013;5(8):445–53. https://doi.org/10.4103/1947-2714.117290.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Samet JM, Bahrami H, Berhane K. Indoor air pollution and cardiovascular disease: new evidence from Iran. Circulation. 2016;133(24):2342–4. https://doi.org/10.1161/CIRCULATIONAHA.116.023477.

    Article  PubMed  PubMed Central  Google Scholar 

  32. World Health Organization: WHO Constitution. https://www.who.int/about/who-we-are/constitution. Accessed 03/23/2019.

  33. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England). 2012;380(9859):2224–60. https://doi.org/10.1016/s0140-6736(12)61766-8.

    Article  PubMed Central  Google Scholar 

  34. Gillies CL, Abrams KR, Lambert PC, Cooper NJ, Sutton AJ, Hsu RT, et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ. 2007;334(7588):299. https://doi.org/10.1136/bmj.39063.689375.55.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang X, Devlin HM, Smith B, Imperatore G, Thomas W, Lobelo F, et al. Effect of lifestyle interventions on cardiovascular risk factors among adults without impaired glucose tolerance or diabetes: a systematic review and meta-analysis. PLoS One. 2017;12(5):e0176436. https://doi.org/10.1371/journal.pone.0176436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haw JS, Galaviz KI, Straus AN, Kowalski AJ, Magee MJ, Weber MB, et al. Long-term sustainability of diabetes prevention approaches: a systematic review and meta-analysis of randomized clinical trials. JAMA Intern Med. 2017;177(12):1808–17. https://doi.org/10.1001/jamainternmed.2017.6040.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kelly MP, Barker M. Why is changing health-related behaviour so difficult? Public Health. 2016;136:109–16. https://doi.org/10.1016/j.puhe.2016.03.030.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Druetz T. Integrated primary health care in low- and middle-income countries: a double challenge. BMC Med Ethics. 2018;19(Suppl 1):48. https://doi.org/10.1186/s12910-018-0288-z.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vargas G, Cajita MI, Whitehouse E, Han HR. Use of short messaging service for hypertension management: a systematic review. J Cardiovasc Nurs. 2017;32(3):260–70. https://doi.org/10.1097/JCN.0000000000000336.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bobrow K, Farmer AJ, Springer D, Shanyinde M, Yu LM, Brennan T, et al. Mobile phone text messages to support treatment adherence in adults with high blood pressure (SMS-text adherence support [StAR]): a single-blind, randomized trial. Circulation. 2016;133(6):592–600. https://doi.org/10.1161/CIRCULATIONAHA.115.017530.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Thakkar J, Kurup R, Laba TL, Santo K, Thiagalingam A, Rodgers A, et al. Mobile telephone text messaging for medication adherence in chronic disease: a meta-analysis. JAMA Intern Med. 2016;176(3):340–9. https://doi.org/10.1001/jamainternmed.2015.7667.

    Article  PubMed  Google Scholar 

  42. Ramachandran A, Snehalatha C, Ram J, Selvam S, Simon M, Nanditha A, et al. Effectiveness of mobile phone messaging in prevention of type 2 diabetes by lifestyle modification in men in India: a prospective, parallel-group, randomised controlled trial. Lancet Diabetes Endocrinol. 2013;1(3):191–8.

    Article  Google Scholar 

  43. WHO: global strategy on occupational health for all: the way to health at work. http://www.who.int/occupational_health/publications/globstrategy/en/index2.html. Accessed 03/25/2019.

  44. Total WSH Services Centre: https://www.totalwshcentre.com/. Accessed 03/13/2019.

  45. ClinicalTrials.gov: Worksite lifestyle program for reducing diabetes and cardiovascular risk in India. https://clinicaltrials.gov/ct2/show/NCT02813668?term=Mary+Beth+Weber&rank=1. Accessed 03/13/2019.

  46. Fonarow GC, Calitz C, Arena R, Baase C, Isaac FW, Lloyd-Jones D, et al. Workplace wellness recognition for optimizing workplace health. Circulation. 2015;131(20):e480–e97. https://doi.org/10.1161/CIR.0000000000000206.

    Article  PubMed  Google Scholar 

  47. Echouffo-Tcheugui JB, Yaya S, Joshi R, Venkat Narayan KM, Kengne AP. Population surveillance of cardiovascular diseases in low-income to middle-income countries should leverage existing international collaborations. BMJ Global Health. 2018;3(5):e000866-e. https://doi.org/10.1136/bmjgh-2018-000866.

    Article  Google Scholar 

  48. • Ali MK, Jaacks LM, Kowalski AJ, Siegel KR, Ezzati M. Noncommunicable diseases: three decades of global data show a mixture of increases and decreases in mortality rates. Health affairs (Project Hope). 2015;34(9):1444–55. https://doi.org/10.1377/hlthaff.2015.0570. Trends in mortality rates caused by non-communicable diseases from 49 countries.

    Article  Google Scholar 

  49. Alwan A, Maclean DR, Riley LM, d'Espaignet ET, Mathers CD, Stevens GA, et al. Monitoring and surveillance of chronic non-communicable diseases: progress and capacity in high-burden countries. Lancet (London, England). 2010;376(9755):1861–8. https://doi.org/10.1016/s0140-6736(10)61853-3.

    Article  Google Scholar 

  50. Nair M, Ali MK, Ajay VS, Shivashankar R, Mohan V, Pradeepa R, et al. CARRS surveillance study: design and methods to assess burdens from multiple perspectives. BMC Public Health. 2012;12(1):701. https://doi.org/10.1186/1471-2458-12-701.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Al-Nsour M, Zindah M, Belbeisi A, Hadaddin R, Brown DW, Walke H. Prevalence of selected chronic, noncommunicable disease risk factors in Jordan: results of the 2007 Jordan Behavioral Risk Factor Surveillance Survey. Prev Chronic Dis. 2012;9:E25.

    PubMed  Google Scholar 

  52. Bovet P, Viswanathan B, Shamlaye C, Romain S, Gedeon J. Addressing non-communicable diseases in the Seychelles: towards a comprehensive plan of action. Glob Health Promot. 2010;17(2 Suppl):37–40. https://doi.org/10.1177/1757975910363930.

    Article  PubMed  Google Scholar 

  53. Reed GJMR. New survey results enhance Cuba’s NCD surveillance: Mariano Bonet, MD. Director, National Hygiene. Epidemiol Microbiol Inst. 2011;13(4):11–3.

    Google Scholar 

  54. Choi BC, Corber SJ, McQueen DV, Bonita R, Zevallos JC, Douglas KA, et al. Enhancing regional capacity in chronic disease surveillance in the Americas. Rev Panam Salud Publica. 2005;17:130–41.

    Article  Google Scholar 

  55. Raccah D, Chou E, Colagiuri S, Gaal Z, Lavalle F, Mkrtumyan A, et al. A global study of the unmet need for glycemic control and predictor factors among patients with type 2 diabetes mellitus who have achieved optimal fasting plasma glucose control on basal insulin. Diabetes Metab Res Rev. 2017;33(3):e2858. https://doi.org/10.1002/dmrr.2858.

    Article  CAS  Google Scholar 

  56. Chow CK, Teo KK, Rangarajan S, Islam S, Gupta R, Avezum A, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA. 2013;310(9):959–68.

    Article  CAS  Google Scholar 

  57. Working Group on the Summit on Combination Therapy for CVD, Yusuf S, Attaran A, Bosch J, Joseph P, Lonn E, et al. Combination pharmacotherapy to prevent cardiovascular disease: present status and challenges. Eur Heart J. 2014;35(6):353–64. https://doi.org/10.1093/eurheartj/eht407.

    Article  Google Scholar 

  58. Teo K, Lear S, Islam S, Mony P, Dehghan M, Li W, et al. Prevalence of a healthy lifestyle among individuals with cardiovascular disease in high-, middle-and low-income countries: the Prospective Urban Rural Epidemiology (PURE) study. JAMA. 2013;309(15):1613–21.

    Article  CAS  Google Scholar 

  59. The Lancet Diabetes Endocrinology. Diabetes and NCD research: meeting the needs of the patient. Lancet Diabetes Endocrinol. 2016;4(11):873. https://doi.org/10.1016/S2213-8587(16)30291-1.

    Article  CAS  PubMed  Google Scholar 

  60. Geldsetzer P, Barnighausen T. Late-stage research for diabetes and related NCDs receives little funding: evidence from the NIH RePORTER tool. Lancet Diabetes Endocrinol. 2017;5(2):91–2. https://doi.org/10.1016/S2213-8587(16)30421-1.

    Article  PubMed  Google Scholar 

  61. Owolabi MO, Yaria JO, Daivadanam M, Makanjuola AI, Parker G, Oldenburg B, et al. Gaps in guidelines for the management of diabetes in low- and middle-income versus high-income countries-a systematic review. Diabetes Care. 2018;41(5):1097–105. https://doi.org/10.2337/dc17-1795.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Owolabi M, Olowoyo P, Miranda JJ, Akinyemi R, Feng W, Yaria J, et al. Gaps in hypertension guidelines in low- and middle-income versus high-income countries: a systematic review. Hypertension. 2016;68(6):1328–37. https://doi.org/10.1161/HYPERTENSIONAHA.116.08290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wirtz VJ, Kaplan WA, Kwan GF, Laing RO. Access to medications for cardiovascular diseases in low- and middle-income countries. Circulation. 2016;133(21):2076–85. https://doi.org/10.1161/CIRCULATIONAHA.115.008722.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Oyebode O, Pape UJ, Laverty AA, Lee JT, Bhan N, Millett C. Rural, urban and migrant differences in non-communicable disease risk-factors in middle income countries: a cross-sectional study of WHO-SAGE data. PLoS One. 2015;10(4):e0122747. https://doi.org/10.1371/journal.pone.0122747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Victora CG, Barros AJ, Franca GV, da Silva IC, Carvajal-Velez L, Amouzou A. The contribution of poor and rural populations to national trends in reproductive, maternal, newborn, and child health coverage: analyses of cross-sectional surveys from 64 countries. Lancet Glob Health. 2017;5(4):e402–e7. https://doi.org/10.1016/S2214-109X(17)30077-3.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hoerger TJ, Segel JE, Gregg EW, Saaddine JB. Is glycemic control improving in US adults? Diabetes Care. 2008;31(1):81–6.

    Article  Google Scholar 

  67. Wirtz VJ, Kaplan WA, Kwan GF, Laing RO. Access to medications for cardiovascular diseases in low- and middle-income countries. Circulation. 2016;133(21):2076–85. https://doi.org/10.1161/CIRCULATIONAHA.115.008722.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ralston J, Reddy KS, Fuster V, Narula J. Cardiovascular diseases on the global agenda: the United Nations high level meeting, sustainable development goals, and the way forward. Glob Heart. 2016;11(4):375–9. https://doi.org/10.1016/j.gheart.2016.10.029.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Heart, Lung, And Blood Institute of the National Institutes of Health under award numbers: R01HL125442 (KMVN, JR, MKA) and U01HL138635 (SAP, KMVN) and the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health under award number P30DK111024 (SAP, MKA, KMVN). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Jagannathan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Macrovascular Complications in Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagannathan, R., Patel, S.A., Ali, M.K. et al. Global Updates on Cardiovascular Disease Mortality Trends and Attribution of Traditional Risk Factors. Curr Diab Rep 19, 44 (2019). https://doi.org/10.1007/s11892-019-1161-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1161-2

Keywords

Navigation