Skip to main content
Log in

Isolation and characterization of pyrroline-5-carboxylate synthetase gene from perennial ryegrass (Lolium perenne L.)

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Perennial ryegrass is an important turf grass and also used as a forage plant. However, abiotic stresses such as salt and drought are main limitations to its cultivation. In the present work, we cloned the gene encoding pyrroline-5-carboxylate synthetase (P5CS) from Lolium perenne, which is responsible for proline biosynthesis. This gene had a coding sequence (CDS) of 2151 base pairs (bp) encoding 716 amino acids. Multi-alignment analyses showed that the putative Lolium perenne P5CS (LpP5CS) contain all conserved functional sites and regions, and also displayed considerable similarities to Triticum astevum P5CS (TaP5CS) and Oryza sativa P5CSs (OsP5CSs). The real-time polymerase chain reaction (PCR) showed that the LpP5CS was highly expressed in leaves than in other tissues under normal conditions, and induced by sodium chloride (NaCl), abscisic acid (ABA), polyethylene glycol and cold treatments. Furthermore, ectopic expression of LpP5CS led to proline accumulation in tobacco under normal conditions. The transgenic tobacco over-expressing LpP5CS exhibited stronger tolerance to salt and drought as compared to control. These results showed, that LpP5CS responds to stress signals involving salt, drought, cold and ABA in perennial ryegrass. Our data indicate that LpP5CS might be a candidate gene for stress-associated molecular breeding in perennial ryegrass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    Article  CAS  PubMed  Google Scholar 

  • Dombrowski JE, Baldwin JC, Martin RC (2008) Cloning and characterization of a salt stress-inducible small GTPase gene from the model grass species Lolium temulentum. J Plant Physiol 165:651–661

    Article  CAS  PubMed  Google Scholar 

  • Hmida-Sayari A, Costa A, Leone A, Jaoua S, Gargouri-Bouzid R (2005) Identification of salt stress-induced transcripts in potato leaves by cDNA-AFLP. Mol Biotechnol 30:31–40

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hu CA, Delauney AJ, Verma DP (1992) A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89:9354–9358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu P, Xu ZS, Lu PP, Hu D, Chen M, Li LC, Ma YZ (2013) A wheat PI4 K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. J Exp Bot 64:2915–2927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma XR, Sun ZY, Jiang CS, Dong ZY, Zhang YZ (2006) Transfer DREB into Lolium perenne L. to improve its drought tolerance. High Technol Lett 12:427–433

    CAS  Google Scholar 

  • Magne A, Gerard D, Hirth L, Laustriat G (1977) Fluorescent study of tobacco mosaic virus protein. Biochim Biophys Acta 495:189–194

    Article  CAS  PubMed  Google Scholar 

  • Mattioli R, Marchese D, D’Angeli S, Altamura MM, Costantino P, Trovato M (2008) Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol 66:277–288

    Article  CAS  PubMed  Google Scholar 

  • Mattioli R, Costantino P, Trovato M (2009a) Proline accumulation in plants: not only stress. Plant Signal. Behav 4:1016–1018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mattioli R, Falasca G, Sabatini S, Altamura MM, Costantino P, Trovato M (2009b) The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiol Plant 137:72–85

    Article  CAS  PubMed  Google Scholar 

  • Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Elarbi Aouani M, Polidoros AN (2011) Antioxidant gene-enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity. Physiol Plant 141:201–214

    Article  CAS  PubMed  Google Scholar 

  • Salminen SO, Grewal PS, Quigley MF (2003) Does mowing height influence alkaloid production in endophytic tall fescue and perennial ryegrass? J Chem Ecol 29:1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Savoure A, Jaoua S, Hua XJ, Ardiles W, Van Montagu M, Verbruggen N (1995) Isolation, characterization, and chromosomal location of a gene encoding the delta 1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett 372:13–19

    Article  CAS  PubMed  Google Scholar 

  • Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    Article  CAS  PubMed  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948

    Article  CAS  Google Scholar 

  • Su M, Li XF, Ma XY, Peng XJ, Zhao AG, Cheng LQ, Chen SY, Liu GS (2011) Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Sci 181:652–659

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  CAS  PubMed  Google Scholar 

  • Vendruscolo EC, Schuster I, Pileggi M, Scapim CA, Molinari HB, Marur CJ, Vieira LG (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Villarroel R, Van Montagu M (1993) Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol 103:771–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verslues PE, Kim YS, Zhu JK (2007) Altered ABA, proline and hydrogen peroxide in an Arabidopsis glutamate:glyoxylate aminotransferase mutant. Plant Mol Biol 64:205–217

    Article  CAS  PubMed  Google Scholar 

  • Xue X, Liu A, Hua X (2009) Proline accumulation and transcriptional regulation of proline biosynthesis and degradation in Brassica napus. BMB Rep 42:28–34

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for delta 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  CAS  PubMed  Google Scholar 

  • Zhang CS, Lu Q, Verma DP (1995) Removal of feedback inhibition of delta 1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J Biol Chem 270:20491–20496

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was funded by the National High Technology Research and Development Program of China (Grant No. 2011AA100209) and Jilin Provincial Department of Education (Grant No. 2013-23).

Conflict of interest

All the authors agreed the content of the manuscript and had no conflicting interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yuan Sun.

Additional information

Communicated by Y Wang.

Lei Han—Co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Han, L., Zhang, Hl. et al. Isolation and characterization of pyrroline-5-carboxylate synthetase gene from perennial ryegrass (Lolium perenne L.). Acta Physiol Plant 37, 62 (2015). https://doi.org/10.1007/s11738-015-1808-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1808-9

Keywords

Navigation