Skip to main content
Log in

Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The alloying of bismuth with III–V semiconductors, in particular GaAs and InAs thin films grown by molecular beam epitaxy (MBE), has attracted considerable interest due to the accompanying changes in band structure and lattice constant. Specifically, bismuth incorporation in these compounds results in both a reduction in band gap (through shifting of the valence band) and an increase in the lattice constant of the alloy. To fully understand the composition of these alloys, a better understanding of the binary endpoints is needed. At present, a limited amount of literature exists on the III-Bi family of materials, most of which is theoretical work based on density functional theory calculations. The only III-Bi material known to exist (in bulk crystal form) is InBi, but its electrical properties have not been sufficiently studied and, to date, the material has not been fabricated as a thin film. We have successfully deposited crystalline InBi on (100) GaAs substrates using MBE. Wetting of the substrate is poor, and regions of varying composition exist across the substrate. To obtain InBi, the growth temperature had to be below 100 °C. It was found that film crystallinity improved with reduced Bi flux, into an In-rich regime. Additionally, attempts were made to grow AlBi and GaBi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Uesugi and I. Suemune, J. Cryst. Growth 188, 103–106 (1998).

    Article  Google Scholar 

  2. S.V. Novikov, C.R. Staddon, C.T. Foxon, K.M. Yu, R. Broesler, M. Hawkridge, Z. Liliental-Weber, J. Denlinger, I. Demchenko, F. Luckert, P.R. Edwards, R.W. Martin, and W. Walukiewicz, J. Cryst. Growth 323, 60–63 (2011).

    Article  Google Scholar 

  3. S. Francoeur, M.-J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, Appl. Phys. Lett. 82, 3874 (2003).

    Article  Google Scholar 

  4. V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K.M. Yu, and W. Walukiewicz, Semicond. Sci. Technol. 22, 819–823 (2007).

    Article  Google Scholar 

  5. R.B. Lewis, M. Masnadi-Shirazi, and T. Tiedje, Appl. Phys. Lett. 101, 082112 (2012).

    Article  Google Scholar 

  6. S.P. Svensson, H. Hier, W.L. Sarney, D. Donetsky, D. Wang, and G. Belenky, J. Vac. Sci. Technol. B 30, 02B109 (2012).

    Article  Google Scholar 

  7. E.C. Young, M.B. Whitwick, T. Tiedje, and D.A. Beaton, Phys. Status Solidi C 4, 1707–1710 (2007).

    Article  Google Scholar 

  8. V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K.M. Yu, and W. Walukiewicz, Semicond. Sci. Technol. 22, 819 (2007).

    Article  Google Scholar 

  9. K.Y. Ma, Z.M. Fang, R.M. Cohen, and G.B. Stringfellow, J. Appl. Phys. 70, 3940 (1991).

    Article  Google Scholar 

  10. A.J. Ptak, R. France, D.A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, J. Cryst. Growth 338, 107–110 (2012).

    Article  Google Scholar 

  11. R.B. Lewis, M. Masnadi-Shirazi, and T. Tiedje, Appl. Phys. Lett. 101, 082112 (2012).

    Article  Google Scholar 

  12. D. Madouri, A. Boukra, A. Zaoui, and M. Ferhat, Comput. Mater. Sci. 43, 818–822 (2008).

    Article  Google Scholar 

  13. A. Janotti, Su-Huai Wei, and S.B. Zhang, Phys. Rev. B 65, 115203 (2002).

    Article  Google Scholar 

  14. M. Ferhat and A. Zaoui, Phys. Rev. B 73, 115107 (2006).

    Article  Google Scholar 

  15. M. Ferhat and A. Zaoui, Appl. Phys. Lett. 88, 161902 (2006).

    Article  Google Scholar 

  16. B. Amrani, H. Achour, S. Louhibi, A. Tebboune, and N. Sekkal, Solid State Commun. 148, 59–62 (2008).

    Article  Google Scholar 

  17. K. Nishimura, T. Yasukawa, and K. Mori, Phys. B 329–333, 1399–1400 (2003).

    Article  Google Scholar 

  18. E. Rapoport, G. D. Pitt, and G. A. Saunders, J. Phys. C 8, L447 (1975).

  19. D. Shah, G.R. Pandya, S. Vyas, M. Jani, and B. Jariwala, J. Cryst. Growth 312, 1085–1089 (2010).

    Article  Google Scholar 

  20. D. Shah, G.R. Pandya, and S.M. Vyas, J. Cryst. Growth 311, 986–989 (2009).

    Article  Google Scholar 

  21. W. Stolz, F.E.G. Guimaraes, and K. Ploog, J. Appl. Phys. 63, 492 (1988).

    Article  Google Scholar 

  22. E.J. Koerperick, L.M. Murray, D.T. Norton, T.F. Boggess, and J.P. Prineas, J. Cryst. Growth 312, 185–191 (2010).

    Article  Google Scholar 

  23. V.I. Ivanov-Omskii, I.A. Petroff, V.A. Smirnov, ShU Yuldashev, I.T. Ferguson, P.J.P. Tang, C.C. Phillips, and R.A. Stradling, Semicond. Sci. Technol. 8, 276 (1993).

    Article  Google Scholar 

  24. P.W. Voorhees, J. Stat. Phys. 38, 231–252 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Keen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keen, B., Makin, R., Stampe, P.A. et al. Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy. J. Electron. Mater. 43, 914–920 (2014). https://doi.org/10.1007/s11664-014-3006-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3006-8

Keywords

Navigation