Skip to main content
Log in

Robust frequency recognition for SSVEP-based BCI with temporally local multivariate synchronization index

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Multivariate synchronization index (MSI) has been proved to be an efficient method for frequency recognition in SSVEP-BCI systems. It measures the correlation according to the entropy of the normalized eigenvalues of the covariance matrix of multichannel signals. In the MSI method, the estimation of covariance matrix omits the temporally local structure of samples. In this study, a new spatio-temporal method, termed temporally local MSI (TMSI), was presented. This new method explicitly exploits temporally local information in modelling the covariance matrix. In order to evaluate the performance of the TMSI, we performs a comparison between the two methods on the real SSVEP datasets from eleven subjects. The results show that the TMSI outperforms the standard MSI. TMSI benefits from exploiting the temporally local structure of EEG signals, and could be a potential method for robust performance of SSVEP-based BCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chang MH, Lee JS, Heo J, Park KS (2016) Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI. J Neurosci Methods 258:104–113

    Article  PubMed  Google Scholar 

  • Cheng M, Gao X, Gao S, Xu D (2002) Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng 49:1181–1186

    Article  PubMed  Google Scholar 

  • Chen X, Chen Z, Gao S, Gao X (2014) A high-ITR SSVEP-based BCI speller. Brain Comput Interf 1:181–191

    Article  Google Scholar 

  • Chen X, Wang Y, Nakanishi M, Gao X, Jung TP, Gao S (2015) High-speed spelling with a noninvasive brain-computer interface. Proc Natl Acad Sci USA 112(44):E6058–E6067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836

    Article  Google Scholar 

  • Carmeli C, Knyazeva MG, Innocenti GM, De Feo O (2005) Assessment of EEG synchronization based on state-space analysis. Neuroimage 25:339–354

    Article  PubMed  Google Scholar 

  • Freeman WJ (2007) Definitions of state variables and state space for brain-computer interface. Part 2: extraction and classification of feature vectors. Cognit Neurodyn 1:85–96

    Article  Google Scholar 

  • Friman O, Volosyak I, Graser A (2007) Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces. IEEE Trans Biomed Eng 54:742–750

    Article  PubMed  Google Scholar 

  • Gao S, Wang Y, Gao X, Hong B (2014) Visual and auditory brain-computer interfaces. IEEE Trans Biomed Eng 61:1436–1447

    Article  PubMed  Google Scholar 

  • He B, Baxter B, Edelman BJ, Cline CC, Ye WW (2015) Noninvasive brain-computer interfaces based on sensorimotor rhythms. Proc IEEE 103:907–925

    Article  CAS  Google Scholar 

  • Huang G, Liu G, Meng J, Zhang D, Zhu X (2010) Model based generalization analysis of common spatial pattern in brain computer interfaces. Cognit Neurodyn 4:217–223

    Article  Google Scholar 

  • Jia C, Gao X, Hong B, Gao S (2011) Frequency and phase mixed coding in SSVEP-based brain-computer interface. IEEE Trans Biomed Eng 58:200–206

    Article  PubMed  Google Scholar 

  • Joudaki A, Salehi N, Jalili M, Knyazeva MG (2012) EEG-based functional brain networks: does the network size matter? PLoS One 7:e35673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lance BJ, Kerick SE, Ries AJ, Oie KS, McDowell K (2012) Brain-computer interface technologies in the coming decades. Proc IEEE 100:1585–1599

    Article  CAS  Google Scholar 

  • Lin Z, Zhang C, Wu W, Gao X (2006) Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng 53:2610–2614

    Article  PubMed  Google Scholar 

  • Long J, Gu Z, Li Y, Yu T, Li F, Fu M (2011) Semi-supervised joint spatio-temporal feature selection for P300-based BCI speller. Cognit Neurodyn 5:387–398

    Article  Google Scholar 

  • Nan W, Wong CM, Wang B, Wan F, Mak PU, Mak PI, Vai MI (2011) A comparison of minimum energy combination and canonical correlation analysis for SSVEP detection. In: Proceedings of 5th international IEEE EMBS conference on neural engineering, pp 469–472

  • Nakanishi M, Wang Y, Wang Y, Jung TP (2015) A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials. PLoS One 10:e0140703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tello RM, Muller SM, Bastos-Filho T, Ferreira A (2014a) A comparison of techniques and technologies for SSVEP classification. In: Proceedings of 5th ISSNIP-IEEE biosignalling and biorobotics conference on biosignal and robot better safer living, pp 1–6

  • Tello RM, Torres Muller SM, Bastos-Filho T, Ferreira A (2014b) Comparison of new techniques based on EMD for control of a SSVEP-BCI. In: IEEE 23rd international symposium on industrial electronics (ISIE), pp 992–997

  • Wang H (2010) Temporally local maximum signal fraction analysis for artifact removal from biomedical signals. IEEE T Signal Proces 58:4919–4925

    Article  Google Scholar 

  • Wang H, Xu D (2012) Comprehensive common spatial patterns with temporal structure information of EEG data: minimizing nontask related EEG component. IEEE Trans Biomed Eng 59:2496–2505

    Article  PubMed  Google Scholar 

  • Wang H, Tang Q, Zheng W (2012) L1-norm-based common spatial patterns. IEEE Trans Biomed Eng 59:653–662

    Article  PubMed  Google Scholar 

  • Wang H, Zhang Y, Waytowich N, Krusienski D, Zhou G, Jin J, Wang X, Cichocki A (2016) Discriminative feature extraction via multivariate linear regression for SSVEP-based BCI. IEEE Trans Neural Syst Rehabil Eng 24(5):532–541

    Article  PubMed  Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  PubMed  Google Scholar 

  • Wu Z, Yao D (2007) Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs. J Neural Eng 5:36

    Article  PubMed  Google Scholar 

  • Xu P, Yang P, Lei X, Yao D (2011) An enhanced probabilistic LDA for multi-class brain computer interface. PLoS One 6:e14634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M et al (2013) Channel selection based on phase measurement in P300-based brain-computer interface. PLoS One 8:e60608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan H, He B (2014) Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE Trans Biomed Eng 61:1425–1435

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhao Q, Jin J, Wang X, Cichocki A (2012a) A novel BCI based on ERP components sensitive to configural processing of human faces. J Neural Eng 9:026018

    Article  PubMed  Google Scholar 

  • Zhang Y, Xu P, Liu T, Hu J, Zhang R, Yao D (2012b) Multiple frequencies sequential coding for SSVEP-based brain-computer interface. PLoS One 7:e29519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Xu P, Liu T, Zhang Y, Guo L, Li P, Yao D (2013a) Local temporal correlation common spatial patterns for single trial EEG classification during motor imagery. Comput Math Methods Med 2013:591216

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhou G, Jin J, Wang M, Wang X, Cichocki A (2013b) L1-regularized multiway canonical correlation analysis for SSVEP-based BCI. IEEE Trans Neural Syst Rehabil Eng 21:887–896

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu P, Cheng K, Yao D (2014a) Multivariate synchronization index for frequency recognition of SSVEP-based brainCcomputer interface. J Neurosci Methods 221:32–40

    Article  PubMed  Google Scholar 

  • Zhang Y, Dong L, Zhang R, Yao D, Zhang Y, Xu P (2014b) An efficient frequency recognition method based on likelihood ratio test for SSVEP-based BCIs. Comput Math Methods Med, Article ID 908719

    Google Scholar 

  • Zhang Y, Zhou G, Jin J, Wang X, Cichocki A (2014c) Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. Int J Neural Syst 24:1450013

    Article  PubMed  Google Scholar 

  • Zhang Z, Jung T-P, Makeig S, Pi Z, Rao B (2014d) Spatiotemporal sparse Bayesian learning with applications to compressed sensing of multichannel physiological signals. IEEE Trans Neural Syst Rehabil Eng 22:1186–1197

    Article  PubMed  Google Scholar 

  • Zhang Y, Zhou G, Jin J, Wang X, Cichocki A (2015) SSVEP recognition using common feature analysis in brain-computer interface. J Neurosci Methods 244:8–15

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (Nos. 81401484, 61527815, 81571770, 61305028) the Doctoral Fund of Southwest University of Science and Technology (Grant No. 15zx7115),and Shanghai Chenguang Program under Grant 14CG31.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangsong Zhang or Daqing Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Guo, D., Xu, P. et al. Robust frequency recognition for SSVEP-based BCI with temporally local multivariate synchronization index. Cogn Neurodyn 10, 505–511 (2016). https://doi.org/10.1007/s11571-016-9398-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-016-9398-9

Keywords

Navigation