Skip to main content
Log in

Regulation of mammalian target of rapamycin complex 1 (mTORC1) by hypoxia: causes and consequences

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Integration of cellular and extracellular signals maintains tissue homeostasis under conditions of normal proliferation and stress. A central player in regulating responses to stress is the serine/threonine kinase mammalian target of rapamycin (mTOR). In many cancers, mTOR complex 1 (mTORC1) signaling is enhanced, even under conditions where such signaling should be suppressed. This article reviews some of the details that are emerging on how low oxygen (hypoxia) regulates mTORC1 signaling, and the consequences for dysregulation in pediatric solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. De Virgilio C, Loewith R (2006) The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38(9):1476–1481. doi:10.1016/j.biocel.2006.02.013

    Article  PubMed  Google Scholar 

  2. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510. doi:10.1038/onc.2008.245

    Article  PubMed  CAS  Google Scholar 

  3. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22. doi:10.1016/j.ccr.2007.05.008

    Article  PubMed  CAS  Google Scholar 

  4. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  5. Vogelstein B, Kinzler KW (1993) The multistep nature of cancer. Trends Genet 9(4):138–141

    Article  PubMed  CAS  Google Scholar 

  6. Petricoin EF 3rd, Espina V, Araujo RP, Midura B, Yeung C, Wan X, Eichler GS, Johann DJ Jr, Qualman S, Tsokos M, Krishnan K, Helman LJ, Liotta LA (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67(7):3431–3440. doi:10.1158/0008-5472.CAN-06-1344

    Article  PubMed  CAS  Google Scholar 

  7. Wan X, Helman LJ (2007) The biology behind mTOR inhibition in sarcoma. Oncologist 12(8):1007–1018. doi:10.1634/theoncologist.12-8-1007

    Article  PubMed  Google Scholar 

  8. Arsham AM, Howell JJ, Simon MC (2003) A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem 278(32):29655–29660. doi:10.1074/jbc.M212770200

    Article  PubMed  CAS  Google Scholar 

  9. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18(23):2893–2904. doi:10.1101/gad.1256804

    Article  PubMed  CAS  Google Scholar 

  10. DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW (2008) Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22(2):239–251. doi:10.1101/gad.1617608

    Article  PubMed  CAS  Google Scholar 

  11. Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, Cordon-Cardo C, Simon MC, Rafii S, Pandolfi PP (2006) PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 442(7104):779–785. doi:10.1038/nature05029

    Article  PubMed  CAS  Google Scholar 

  12. Li Y, Wang Y, Kim E, Beemiller P, Wang CY, Swanson J, You M, Guan KL (2007) Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem 282(49):35803–35813. doi:10.1074/jbc.M705231200

    Article  PubMed  CAS  Google Scholar 

  13. Wouters BG, Koritzinsky M (2008) Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer 8(11):851–864. doi:10.1038/nrc2501

    Article  PubMed  CAS  Google Scholar 

  14. Bristow RG, Hill RP (2008) Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8(3):180–192. doi:10.1038/nrc2344

    Article  PubMed  CAS  Google Scholar 

  15. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3(3):155–168. doi:10.1038/nrc1011

    Article  PubMed  CAS  Google Scholar 

  16. Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408(6811):433–439. doi:10.1038/35044005

    Article  PubMed  CAS  Google Scholar 

  17. Durocher D, Jackson SP (2001) DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 13(2):225–231

    Article  PubMed  CAS  Google Scholar 

  18. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22(20):5612–5621. doi:10.1093/emboj/cdg541

    Article  PubMed  CAS  Google Scholar 

  19. Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308(5721):551–554. doi:10.1126/science.1108297

    Article  PubMed  CAS  Google Scholar 

  20. Goldberg M, Stucki M, Falck J, D’Amours D, Rahman D, Pappin D, Bartek J, Jackson SP (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421(6926):952–956. doi:10.1038/nature01445

    Article  PubMed  CAS  Google Scholar 

  21. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421(6926):961–966. doi:10.1038/nature01446

    Article  PubMed  CAS  Google Scholar 

  22. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922):499–506. doi:10.1038/nature01368

    Article  PubMed  CAS  Google Scholar 

  23. Andegeko Y, Moyal L, Mittelman L, Tsarfaty I, Shiloh Y, Rotman G (2001) Nuclear retention of ATM at sites of DNA double strand breaks. J Biol Chem 276(41):38224–38230. doi:10.1074/jbc.M102986200

    PubMed  CAS  Google Scholar 

  24. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281(5383):1677–1679

    Article  PubMed  CAS  Google Scholar 

  25. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 97(19):10389–10394. doi:10.1073/pnas.190030497

    Article  PubMed  CAS  Google Scholar 

  26. Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286(5442):1162–1166

    Article  PubMed  CAS  Google Scholar 

  27. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276(45):42462–42467. doi:10.1074/jbc.C100466200

    Article  PubMed  CAS  Google Scholar 

  28. Bencokova Z, Kaufmann MR, Pires IM, Lecane PS, Giaccia AJ, Hammond EM (2009) ATM activation and signaling under hypoxic conditions. Mol Cell Biol 29(2):526–537. doi:10.1128/MCB.01301-08

    Article  PubMed  CAS  Google Scholar 

  29. Cam H, Easton JB, High A, Houghton PJ (2010) mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol Cell 40(4):509–520. doi:10.1016/j.molcel.2010.10.030

    Article  PubMed  CAS  Google Scholar 

  30. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434(7035):864–870. doi:10.1038/nature03482

    Article  PubMed  CAS  Google Scholar 

  31. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204. doi:10.1016/j.molcel.2010.09.019

    Article  PubMed  CAS  Google Scholar 

  32. Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, Inoki K, Guan KL, Shen J, Person MD, Kusewitt D, Mills GB, Kastan MB, Walker CL (2010) ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 107(9):4153–4158. doi:10.1073/pnas.0913860107

    Article  PubMed  CAS  Google Scholar 

  33. Freiberg RA, Hammond EM, Dorie MJ, Welford SM, Giaccia AJ (2006) DNA damage during reoxygenation elicits a Chk2-dependent checkpoint response. Mol Cell Biol 26(5):1598–1609. doi:10.1128/MCB.26.5.1598-1609.2006

    Article  PubMed  CAS  Google Scholar 

  34. Hunt CR, Pandita RK, Laszlo A, Higashikubo R, Agarwal M, Kitamura T, Gupta A, Rief N, Horikoshi N, Baskaran R, Lee JH, Lobrich M, Paull TT, Roti Roti JL, Pandita TK (2007) Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res 67(7):3010–3017. doi:10.1158/0008-5472.CAN-06-4328

    Article  PubMed  CAS  Google Scholar 

  35. Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5(5):343–354. doi:10.1038/nrm1366

    Article  PubMed  CAS  Google Scholar 

  36. Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH (2000) Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275(33):25733–25741. doi:10.1074/jbc.M002740200

    Article  PubMed  CAS  Google Scholar 

  37. Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294(5545):1337–1340. doi:10.1126/science.1066373

    Article  PubMed  CAS  Google Scholar 

  38. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107(1):43–54

    Article  PubMed  CAS  Google Scholar 

  39. Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouyssegur J, Yaniv M, Mechta-Grigoriou F (2004) JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118(6):781–794. doi:10.1016/j.cell.2004.08.025

    Article  PubMed  CAS  Google Scholar 

  40. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468. doi:10.1126/science.105981

    Article  PubMed  CAS  Google Scholar 

  41. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472. doi:10.1126/science.1059796

    Article  PubMed  CAS  Google Scholar 

  42. Nakayama K, Frew IJ, Hagensen M, Skals M, Habelhah H, Bhoumik A, Kadoya T, Erdjument-Bromage H, Tempst P, Frappell PB, Bowtell DD, Ronai Z (2004) Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell 117(7):941–952. doi:10.1016/j.cell.2004.06.001

    Article  PubMed  CAS  Google Scholar 

  43. Brahimi-Horn C, Mazure N, Pouyssegur J (2005) Signalling via the hypoxia-inducible factor-1alpha requires multiple posttranslational modifications. Cell Signal 17(1):1–9. doi:10.1016/j.cellsig.2004.04.010

    Article  PubMed  CAS  Google Scholar 

  44. Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F, Arzt E (2007) RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131(2):309–323. doi:10.1016/j.cell.2007.07.044

    Article  PubMed  CAS  Google Scholar 

  45. Cheng J, Kang X, Zhang S, Yeh ET (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131(3):584–595. doi:10.1016/j.cell.2007.08.045

    Article  PubMed  CAS  Google Scholar 

  46. Gao X, Pan D (2001) TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev 15(11):1383–1392. doi:10.1101/gad.901101

    Article  PubMed  CAS  Google Scholar 

  47. Potter CJ, Huang H, Xu T (2001) Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105(3):357–368

    Article  PubMed  CAS  Google Scholar 

  48. Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648–657. doi:10.1038/ncb839

    Article  PubMed  CAS  Google Scholar 

  49. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10(1):151–162

    Article  PubMed  CAS  Google Scholar 

  50. Li Y, Inoki K, Vacratsis P, Guan KL (2003) The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14-3-3. J Biol Chem 278(16):13663–13671. doi:10.1074/jbc.M300862200

    Article  PubMed  CAS  Google Scholar 

  51. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J (2004) Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 101(37):13489–13494. doi:10.1073/pnas.0405659101

    Article  PubMed  CAS  Google Scholar 

  52. Corradetti MN, Inoki K, Guan KL (2005) The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. J Biol Chem 280(11):9769–9772. doi:10.1074/jbc.C400557200

    Article  PubMed  CAS  Google Scholar 

  53. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101(10):3329–3335. doi:10.1073/pnas.0308061100

    Article  PubMed  CAS  Google Scholar 

  54. Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC (2006) Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21(4):521–531. doi:10.1016/j.molcel.2006.01.010

    Article  PubMed  Google Scholar 

  55. Reiling JH, Hafen E (2004) The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev 18(23):2879–2892. doi:10.1101/gad.322704

    Article  PubMed  CAS  Google Scholar 

  56. Vega-Rubin-de-Celis S, Abdallah Z, Kinch L, Grishin NV, Brugarolas J, Zhang X (2010) Structural analysis and functional implications of the negative mTORC1 regulator REDD1. Biochemistry 49(11):2491–2501. doi:10.1021/bi902135e

    Article  PubMed  CAS  Google Scholar 

  57. Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD, McKeon F, Haber DA (2002) REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 10(5):995–1005

    Article  PubMed  CAS  Google Scholar 

  58. Wang Z, Malone MH, Thomenius MJ, Zhong F, Xu F, Distelhorst CW (2003) Dexamethasone-induced gene 2 (dig2) is a novel pro-survival stress gene induced rapidly by diverse apoptotic signals. J Biol Chem 278(29):27053–27058. doi:10.1074/jbc.M303723200

    Article  PubMed  CAS  Google Scholar 

  59. Houghton PJ, Huang S (2004) mTOR as a target for cancer therapy. Curr Top Microbiol Immunol 279:339–359

    Article  PubMed  CAS  Google Scholar 

  60. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484. doi:10.1016/j.cell.2006.01.016

    Article  PubMed  CAS  Google Scholar 

  61. Connolly E, Braunstein S, Formenti S, Schneider RJ (2006) Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells. Mol Cell Biol 26(10):3955–3965. doi:10.1128/MCB.26.10.3955-3965.2006

    Article  PubMed  CAS  Google Scholar 

  62. Kaper F, Dornhoefer N, Giaccia AJ (2006) Mutations in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions. Cancer Res 66(3):1561–1569. doi:10.1158/0008-5472.CAN-05-3375

    Article  PubMed  CAS  Google Scholar 

  63. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379(6560):88–91. doi:10.1038/379088a0

    Article  PubMed  CAS  Google Scholar 

  64. Squatrito M, Brennan CW, Helmy K, Huse JT, Petrini JH, Holland EC (2010) Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell 18(6):619–629. doi:10.1016/j.ccr.2010.10.034

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

The authors have no financial or other conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Houghton.

Additional information

Supported by USPHS award CA77776

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cam, H., Houghton, P.J. Regulation of mammalian target of rapamycin complex 1 (mTORC1) by hypoxia: causes and consequences. Targ Oncol 6, 95–102 (2011). https://doi.org/10.1007/s11523-011-0173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-011-0173-x

Keywords

Navigation