Skip to main content
Log in

A P300-based brain–computer interface aimed at operating electronic devices at home for severely disabled people

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The present study aims at developing and assessing an assistive tool for operating electronic devices at home by means of a P300-based brain–computer interface (BCI). Fifteen severely impaired subjects participated in the study. The developed tool allows users to interact with their usual environment fulfilling their main needs. It allows for navigation through ten menus and to manage up to 113 control commands from eight electronic devices. Ten out of the fifteen subjects were able to operate the proposed tool with accuracy above 77 %. Eight out of them reached accuracies higher than 95 %. Moreover, bitrates up to 20.1 bit/min were achieved. The novelty of this study lies in the use of an environment control application in a real scenario: real devices managed by potential BCI end-users. Although impaired users might not be able to set up this system without aid of others, this study takes a significant step to evaluate the degree to which such populations could eventually operate a stand-alone system. Our results suggest that neither the type nor the degree of disability is a relevant issue to suitably operate a P300-based BCI. Hence, it could be useful to assist disabled people at home improving their personal autonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allison BZ, Brunner C, Kaiser V, Müller-Putz GR, Neuper C, Pfurtscheller G (2010) Toward a hybrid brain–computer interface based on imagined movement and visual attention. J Neural Eng 7:026007

    Article  CAS  Google Scholar 

  2. Aloise F, Schettini F, Aricò P, Leotta F, Salinari S, Mattia D, Babiloni F, Cincotti F (2011) P300-based brain–computer interface for environmental control: an asynchronous approach. J Neural Eng 8:025025

    Article  PubMed  CAS  Google Scholar 

  3. Aloise F, Schettini F, Aricò P, Salinari S, Guger C, Rinsma J, Aiello M, Mattia D, Cincotti F (2011) Asynchronous P300-based brain–computer interface to control a virtual environment: initial tests on end users. Clin EEG Neurosci 42:219–224

    Article  PubMed  Google Scholar 

  4. Carrillo de la Peña MT, Cadaveira F (2000) The effect of motivational instructions on P300 amplitude. Neurophysiol Clin 30:232–239

    Article  PubMed  Google Scholar 

  5. Donchin E, Smith DB (1970) The contingent negative variation and the late positive wave of the average evoked potential. Electroencephalogr Clin Neurophysiol 29:201–203

    Article  PubMed  CAS  Google Scholar 

  6. Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a P300-based brain–computer interface. IEEE Trans Rehabil Eng 8:174–179

    Article  PubMed  CAS  Google Scholar 

  7. Draper N, Smith H (1981) Applied Regression Analysis. John Wiley & Sons, New York

    Google Scholar 

  8. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523

    Article  PubMed  CAS  Google Scholar 

  9. Furdea A, Halder S, Krusienski DJ, Bross D, Nijboer F, Birbaumer N, Kübler A (2009) An auditory oddball (P300) spelling system for brain–computer interfaces. Psychophysiology 46:617–625

    Article  PubMed  CAS  Google Scholar 

  10. Hoffman U, Vesin JM, Ebrahimi T, Diserens K (2008) An efficient P300-based brain–computer interface for disabled subjects. J Neurosci Methods 167:115–125

    Article  Google Scholar 

  11. Hosmer DW, Lemeshow S (1989) Applied Logistic Regression. Wiley, New York

    Google Scholar 

  12. Intriligator J, Polich J (1994) On the relationship between background EEG and the P300 event-related potential. Biol Psychol 37:207–218

    Article  PubMed  CAS  Google Scholar 

  13. Iturrate I, Antelis JM, Kübler A, Mínguez J (2009) A Noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans Robot 25:614–627

    Article  Google Scholar 

  14. Jasper HH (1958) The ten twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol 10:371–375

    Google Scholar 

  15. Jin J, Allison BZ, Sellers EW, Brunner C, Horki P, Wang X, Neuper C (2011) Optimized stimulus presentation patterns for an event-related potential EEG-based brain–computer interface. Med Biol Eng Comput 49:181–191

    Article  PubMed  Google Scholar 

  16. Jin J, Sellers EW, Wang X (2012) Targeting an efficient target-to-target interval for P300 speller brain–computer interfaces. Med Biol Eng Comput 50:289–296

    Article  PubMed  PubMed Central  Google Scholar 

  17. Khan OI, Farooq F, Akram F, Choi MT, Han S, Kim TS (2012) Robust extraction of P300 using constrained ICA for BCI applications. Med Biol Eng Comput 50:231–241

    Article  PubMed  Google Scholar 

  18. Kleih SC, Nijboer F, Halder S, Kübler A (2010) Motivation modulates the P300 amplitude during brain–computer interface use. Clin Neurophysiol 121:1023–1031

    Article  PubMed  CAS  Google Scholar 

  19. Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, Wolpaw JR (2006) A comparison of classification techniques for the P300 speller. J Neural Eng 3:299–305

    Article  PubMed  Google Scholar 

  20. Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR (2008) Toward enhanced P300 speller performance. J Neurosci Methods 167:14–21

    Article  Google Scholar 

  21. Kübler A, Kotchoubey B, Kaiser J (2001) Brain–computer communication: unlocking the locked in. Psychol Bull 127(3):358–375

    Article  PubMed  Google Scholar 

  22. Mak JN, Wolpaw JR (2009) Clinical applications of brain–computer interfaces: current state and future prospects. IEEE Rev Biomed Eng 2:187–199

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mak JN, Arbel Y, Minett JW, McCane LM, Yuksel B, Ryan D, Thompson D, Bianchi L, Erdogmus D (2011) Optimizing the P300-based brain–computer interface: current status, limitations and future directions. J Neural Eng 8:025003

    Article  PubMed  CAS  Google Scholar 

  24. Mak JN, McFarland DJ, Vaughan TM, McCane LM, Tsui PZ, Zeitlin DJ, Sellers EW, Wolpaw JR (2012) EEG correlates of P300-based brain–computer interface (BCI) performance in people with amyotrophic lateral sclerosis. J Neural Eng 9:026014

    Article  PubMed  Google Scholar 

  25. Moore MM (2003) Real-world applications for brain–computer interface technology. IEEE Trans Neural Syst Rehabil Eng 11:162–165

    Article  PubMed  Google Scholar 

  26. Mugler EM, Ruf CA, Halder S, Bensch M, Kübler A (2010) Design and implementation of a P300-based brain–computer interface for controlling an internet browser. IEEE Trans Neural Syst Rehabil Eng 18:599–609

    Article  PubMed  Google Scholar 

  27. Münβinger JI, Halder S, Kleih SC, Furdea A, Raco V, Hösle A, Kübler A (2010) Brain painting: first evaluation of a new brain–computer interface application with ALS-patients and healthy volunteers. Front Neurosci 4:182

    Google Scholar 

  28. Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S (2008) A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119:1909–1916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Ortner R, Aloise F, Prückl R, Schettini F, Putz V, Scharinger J, Opisso E, Costa U, Guger C (2011) Accuracy of a P300 speller for people with motor impairments: a comparison. Clin EEG Neurosci 42:214–218

    Article  PubMed  Google Scholar 

  30. Piccione F, Giorgi F, Tonin P, Priftis K, Giove S, Silvoni S, Palmas G, Beverina F (2006) P300-based brain computer interface: reliability and performance in healthy and paralysed participants. Clin Neurophysiol 117:531–537

    Article  PubMed  CAS  Google Scholar 

  31. Rakotomamonjy A, Guigue V (2008) BCI competition III: dataset II—ensemble of SVMs for BCI P300 speller. IEEE Trans Biomed Eng 55:1147–1154

    Article  PubMed  Google Scholar 

  32. Rivet B, Souloumiac A, Attina V, Gibert G (2009) xDAWN algorithm to enhance evoked potentials: application to brain–computer interface. IEEE Trans Biomed Eng 56:2035–2043

    Article  PubMed  Google Scholar 

  33. Salvaris M, Sepulveda F (2009) Visual modifications on the P300 speller BCI paradigm. J Neural Eng 6:046011

    Article  PubMed  CAS  Google Scholar 

  34. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a general-purpose brain–computer interface (BCI) system. IEEE Trans Biomed Eng 51:1034–1043

    Article  PubMed  Google Scholar 

  35. Schalk G, Mellinger J (2010) A practical guide to brain-computer interfacing with BCI2000. Springer-Verlag, London

    Book  Google Scholar 

  36. Schreuder M, Höhne J, Blankertz B, Haufe S, Dickhaus T, Tangermann M (2013) Optimizing event-related potential based brain–computer interfaces: a systematic evaluation of dynamic stopping methods. J Neural Eng 10:036025

    Article  PubMed  Google Scholar 

  37. Sellers EW, Donchin E (2006) A P300-based brain–computer interface: initial tests by ALS patients. Clin Neurophysiol 117:538–548

    Article  PubMed  Google Scholar 

  38. Sellers EW, Krusienski DJ, McFarland DJ, Vaughan TM, Wolpaw JR (2006) A P300 event-related potential brain–computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol Psychol 73:242–252

    Article  PubMed  Google Scholar 

  39. Serby H, Yom-Tov E, Inbar GF (2005) An improved P300-based brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 13:89–98

    Article  PubMed  Google Scholar 

  40. Spüler M, Bensch M, Kleih S, Rosenstiel W, Bogdan M, Kübler A (2012) Online use of error-related potentials in healthy users and people with severe motor impairment increases performance of a P300-BCI. Clin Neurophysiol 123:1328–1337

    Article  PubMed  Google Scholar 

  41. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  PubMed  Google Scholar 

  42. Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, Donchin E, Quatrano LA, Robinson CJ, Vaughan TM (2002) Brain–computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng 8:164–173

    Article  Google Scholar 

  43. Xu N, Gao X, Hong B, Miao X, Gao S, Yang F (2004) BCI competition 2003—data set IIb: enhancing P300 wave detection using ICA-based subspace projections for BCI applications. IEEE Trans Biomed Eng 51:1067–1072

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Project Cero 2011 on Ageing from Fundación General CSIC, Obra Social La Caixa and CSIC and by the Ministerio de Economía y Competitividad and FEDER under project TEC2011-22987. R. Corralejo was in receipt of a PIRTU Grant from the Consejería de Educación (Junta de Castilla y León) and the European Social Fund. L.F. Nicolás-Alonso was in receipt of a PIF-UVa Grant from the Universidad de Valladolid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebeca Corralejo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corralejo, R., Nicolás-Alonso, L.F., Álvarez, D. et al. A P300-based brain–computer interface aimed at operating electronic devices at home for severely disabled people. Med Biol Eng Comput 52, 861–872 (2014). https://doi.org/10.1007/s11517-014-1191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1191-5

Keywords

Navigation