Skip to main content
Log in

Pulsar braking: magnetodipole vs. wind

  • Invited Review
  • Astrophysics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Pulsars are good clocks in the universe. One fundamental question is that why they are good clocks? This is related to the braking mechanism of pulsars. Nowadays pulsar timing is done with unprecedented accuracy. More pulsars have braking indices measured. The period derivative of intermittent pulsars and magnetars can vary by a factor of several. However, during pulsar studies, the magnetic dipole braking in vacuum is still often assumed. It is shown that the fundamental assumption of magnetic dipole braking (vacuum condition) does not exist and it is not consistent with the observations. The physical torque must consider the presence of the pulsar magnetosphere. Among various efforts, the wind braking model can explain many observations of pulsars and magnetars in a unified way. It is also consistent with the up-to-date observations. It is time for a paradigm shift in pulsar studies: from magnetic dipole braking to wind braking. As one alternative to the magnetospheric model, the fallback disk model is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Han, IAUS. 291, 223 (2013).

    ADS  Google Scholar 

  2. K. J. Lee, Proc. Int. Astron. Union. 291, 189 (2013).

    ADS  Google Scholar 

  3. P. Goldreich, and W. H. Julian, Astrophys. J. 157, 869 (1969).

    Article  ADS  Google Scholar 

  4. H. Tong, R. X. Xu, L. M. Song, and G. J. Qiao, Astrophys. J. 768, 144 (2013).

    Article  ADS  Google Scholar 

  5. R. X. Xu, and G. J. Qiao, Astrophys. J. 561, L85 (2001).

    Article  ADS  Google Scholar 

  6. A. Lyne, and F. Graham-Smith, Pulsar Astronomy (Cambridge University Press, New York, 2012).

    Book  Google Scholar 

  7. S. L. Shapiro, and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983).

    Book  Google Scholar 

  8. R. X. Xu, An Introduction to Astrophysics (Peking University Press, Beijing, 2006).

    Google Scholar 

  9. V. S. Beskin, MHD Flows in Compact Astrophysical Objects (Springer, Berlin, 2010).

    Book  Google Scholar 

  10. H. Tong, and W. Wang, arXiv:1406.6458.

  11. A. Hewish, S. J. Bell, J. D. Pilkington, P. F. Scott, and R. A. Collins, Nature 217, 709 (1968).

    Article  ADS  Google Scholar 

  12. T. Gold, Nature 218, 731 (1968).

    Article  ADS  Google Scholar 

  13. T. Gold, Nature 221, 25 (1969).

    Article  ADS  Google Scholar 

  14. B. M. Gaensler, and P. O. Slane, Annu. Rev. Astron. Astrophys. 44, 17 (2006).

    Article  ADS  Google Scholar 

  15. F. Pacini, Nature 216, 567 (1967).

    Article  ADS  Google Scholar 

  16. F. Pacini, Nature 219, 145 (1968).

    Article  ADS  Google Scholar 

  17. J. E. Gunn, and J. P. Ostriker, Nature 221, 454 (1969).

    Article  ADS  Google Scholar 

  18. E. V. Gotthelf, J. P. Halpern, and J. Alford, Astrophys. J. 765, 58 (2013).

    Article  ADS  Google Scholar 

  19. L. Davis, and M. Goldstein, Astrophys. J. 159, L81 (1970).

    Article  ADS  Google Scholar 

  20. J. P. Ostriker, and J. E. Gunn, Astrophys. J. 157, 1395 (1969).

    Article  ADS  Google Scholar 

  21. M. A. Ruderman, and P. G. Sutherland, Astrophys. J. 196, 51 (1975).

    Article  ADS  Google Scholar 

  22. P. A. Sturrock, Astrophys. J. 164, 529 (1971).

    Article  ADS  Google Scholar 

  23. E. J. Groth, Astrophys. J. Suppl. Ser. 29, 453 (1975).

    Article  ADS  Google Scholar 

  24. R. N. Manchester, J. M. Durdin, and L. M. Newton, Nature 313, 374 (1985).

    Article  ADS  Google Scholar 

  25. F. C. Michel, Astrophys. J. 158, 727 (1969).

    Article  ADS  Google Scholar 

  26. G. Hobbs, A. G. Lyne, and M. Kramer, Mon. Not. R. Astron. Soc. 402, 1027 (2010).

    Article  ADS  Google Scholar 

  27. A. Lyne, C. A. Jordan, F. Graham-Smith, C. Espinoza, B. Stappers, and P. Weltrvrede, Mon. Not. R. Astron. Soc. 446, 857 (2015).

    Article  ADS  Google Scholar 

  28. C. M. Espinoza, A. G. Lyne, M. Kramer, R. N. Manchester, and V. Kaspi, Astrophys. J. 741, L13 (2011).

    Article  ADS  Google Scholar 

  29. M. A. Livingstone, V. M. Kaspi, and F. P. Gavriil, Astrophys. J. 619, 1046 (2005).

    Article  ADS  Google Scholar 

  30. F. F. Kou, and H. Tong, Mon. Not. R. Astron. Soc. 450, 1990 (2015).

    Article  ADS  Google Scholar 

  31. C. M. Espinoza, IAUS. 291, 195 (2013).

    ADS  Google Scholar 

  32. M. A. Livingstone, C. Y. Ng, V. M. Kaspi, F. P. Gavriil, and E. V. Gotthelf, Astrophys. J. 730, 66 (2011).

    Article  ADS  Google Scholar 

  33. J. Wang, N. Wang, H. Tong, and J. P. Yuan, Astrophys. Space Sci. 340, 307 (2012).

    Article  ADS  Google Scholar 

  34. D. C. Backer, Nature 228, 42 (1970).

    Article  ADS  Google Scholar 

  35. M. Kramer, A. G. Lyne, J. T. O’Brien, C. Jordan, and D. R. Lorimer, Science 312, 549 (2006).

    Article  ADS  Google Scholar 

  36. L. Li, H. Tong, W. M. Yan, J. P. Yuan, R. X. Xu, and N. Wang, Astrophys. J. 788, 16 (2014).

    Article  ADS  Google Scholar 

  37. F. Camilo, S. M. Ransom, S. Chatterjee, C. Johnston, P. Demorest, and F. Camilo, Astrophys. J. 746, 63 (2012).

    Article  ADS  Google Scholar 

  38. D. R. Lorimer, A. G. Lyne, M. A. McLaughlin, M. Kramer, G. G. Pavlov, C. Chang, and D. R. Lorimer, Astrophys. J. 758, 141 (2012).

    Article  ADS  Google Scholar 

  39. A. Lyne, G. Hobbs, M. Kramer, I. Stairs, and B. Stappers, Science 329, 408 (2010).

    Article  ADS  Google Scholar 

  40. N. J. Young, P. Weltevrede, B. W. Stappers, A. G. Lyne, and M. Kramer, Mon. Not. R. Astron. Soc. 449, 1495 (2015).

    Article  ADS  Google Scholar 

  41. M. A. McLaughlin, A. G. Lyne, D. R. Lorimer, M. Kramer, R. N. Faulkner, A. J. Manchester, J. M. Cordes, F. Camilo, A. Possenti, I. H. Stairs, G. Hobbs, N. DAmico, M. Burgay, and J. T. OBrien, Nature 439, 817 (2006).

    Article  ADS  Google Scholar 

  42. F. Camilo, S. M. Ransom, J. P. Halpern, J. Reynolds, D. J. Helfand, N. Zimmerman, and J. Sarkissian, Nature 442, 892 (2006).

    Article  ADS  Google Scholar 

  43. C. Karako-Argaman, V. M. Kaspi, R. S. Lynch, J. W. T. Hessels, V. I. Kondratiev, M. A. McLaughlin, S. M. Ransom, A. M. Archibald, J. Boyles, F. A. Jenet, D. L. Kaplan, L. Levin, D. R. Lorimer, E. C. Madsen, M. S. E. Roberts, X. Siemens, I. H. Stairs, K. Stovall, J. K. Swiggum, and J. van Leeuwen, arXiv:1503.05170.

  44. S. A. Olausen, and V. M. Kaspi, Astrophys. J. Suppl. Ser. 212, 6 (2014).

    Article  ADS  Google Scholar 

  45. R. C. Duncan, and C. Thompson, Astrophys. J. 392, L9 (1992).

    Article  ADS  Google Scholar 

  46. J. I. Katz, Astrophys. J. 260, 371 (1982).

    Article  ADS  Google Scholar 

  47. H. Tong, and R. X. Xu, Astron. Nachrich. 335, 757 (2014).

    Article  ADS  Google Scholar 

  48. A. I. Ibrahim, C. B. Mardwardt, J. H. Swank, S. Ransom, M. Roberts, and V. Kaspi, Astrophys. J. 609, L21 (2004).

    Article  ADS  Google Scholar 

  49. F. Camilo, I. Cognard, S. M. Ranson, J. P. Halpern, J. Reynolds, N. Zimmerman, E. V. Gotthelf, D. J. Helfand, P. Demorest, G. Theureau, and D. C. Backer, Astrophys. J. 663, 497 (2007).

    Article  ADS  Google Scholar 

  50. L. Levin, M. Bailes, S. D. Bates, N. D. R. Bhat, M. Burgay, S. Burke- Spolaor, N. D’Amico, S. Johnston, M. J. Keith, M. Kramer, S. Milia, A. Possenti, B. Stappers, and W. van Straten, Mon. Not. R. Astron. Soc. 422, 2489 (2012).

    Article  ADS  Google Scholar 

  51. G. E. Anderson, B. M. Gaensler, P. O. Slane, N. Rea, D. L. Kaplan, B. Posselt, L. Levin, S. Johnston, S. S. Murray, C. L. Brogan, M. Bailes, S. Bates, R. A. Benjamin, N. D. R. Bhat, M. Burgay, S. Burke-Spolaor, D. Chakrabarty, N. D’Amico, J. J. Drake, P. Esposito, J. E. Grindlay, J. Hong, G. L. Israel, M. J. Keith, M. Kramer, T. J. W. Lazio, J. C. Lee, J. C. Mauerhan, S. Milia, A. Possenti, B. Stappers, and D. T. H. Steeghs, Astrophys. J. 751, 53 (2012).

    Article  ADS  Google Scholar 

  52. F. Camilo, J. Reynolds, S. Johnston, J. P. Halpern, and S. M. Ransom, Astrophys. J. 679, 681 (2008).

    Article  ADS  Google Scholar 

  53. V. M. Kaspi, R. F. Archibald, V. Bhalerao, F. Dufour, E. V. Gotthelf, and H. An, Astrophys. J. 786, 84 (2014).

    Article  ADS  Google Scholar 

  54. H. Tong, arXiv:1403.7898.

  55. H. Tong, arXiv:1503.08904.

  56. C. Kouveliotou, S. Dieters, T. Strohmayer, J. Vanparadijs, G. J. Fishman, and C. A. Meegan, Nature 393, 235 (1998).

    Article  ADS  Google Scholar 

  57. N. Rea, P. Esposito, R. Turolla, G. L. Israel, S. Zane, L. Stella, S. Mereghetti, A. Tiengo, D. Gotz, E. Gogus, and C. Kouveliotou, Science 330, 944 (2010).

    Article  ADS  Google Scholar 

  58. R. Turolla, S. Zane, J. A. Pons, P. Esposito, and N. Rea, Astrophys. J. 740, 105 (2011).

    Article  ADS  Google Scholar 

  59. H. Tong, and R. X. Xu, Astrophys. J. 757, L10 (2012).

    Article  ADS  Google Scholar 

  60. N. Rea, G. L. Israel, P. Esposito, J. A. Pons, A. Camero-Arranz, R. P. Mignani, R. Turolla, S. Zane, M. Burgay, A. Possenti, S. Campana, T. Enoto, N. Gehrels, E. Gogus, D. Gotz, C. Kouveliotou, K. Makishima, S. Mereghetti, S. R. Oates, D. M. Palmer, R. Perna, and N. Rea, Astrophys. J. 754, 27 (2012).

    Article  ADS  Google Scholar 

  61. P. Zhou, Y. Chen, X. D. Li, S. Safi-Harb, M. Mendez, Y. Terada, W. Sun, M. Y. Ge, and P. Zhou, Astrophys. J. 781, L16 (2014).

    Article  ADS  Google Scholar 

  62. V. M. Kaspi, F. P. Gavriil, P. M. Woods, J. B. Jensen, M. S. E. Roberts, and D. Chakrabarty, Astrophys. J. 588, L93 (2003).

    Article  ADS  Google Scholar 

  63. P. M. Woods, C. Kouveliotou, M. H. Finger, E. Gogus, C. A. Wilson, S. K. Patel, K. Hurley, and J. H. Swank, Astrophys. J. 654, 470 (2007).

    Article  ADS  Google Scholar 

  64. P. M.Woods, C. Koeveliotou, J. van Paradijs, M. H. Finger, C. Thompson, and R. C. Duncan, Astrophys. J. 524, L55 (1999).

    Article  ADS  Google Scholar 

  65. R. F. Archibald, V. M. Kaspi, C. Y. Ng, K. N. Gourgouliatos, D. Tsang, P. Scholz, A. P. Beardmore, N. Gehrels, A. P. Beardmore, N. Gehrels, and J. A. Kennea, Nature 497, 591 (2013).

    Article  ADS  Google Scholar 

  66. M. A. Livingstone, V. M. Kaspi, and F. P. Gavriil, Astrophys. J. 710, 1710 (2010).

    Article  ADS  Google Scholar 

  67. R. F. Archibald, V. M. Kaspi, C. Y. Ng, P. Scholz, A. P. Beardmore, N. Gehrels, and J. A. Kennea, Astrophys. J. 800, 33 (2015).

    Article  ADS  Google Scholar 

  68. H. Tong, Astrophys. J. 786, 86 (2014).

    Article  ADS  Google Scholar 

  69. A. Lyne, F. Graham-Smith, P. Weltevrede, C. Jordan, B. Stappers, C. Bassa, M. Kramer, and A. Lyne, Science 342, 598 (2013).

    Article  ADS  Google Scholar 

  70. Y. L. Yue, R. X. Xu, and W. W. Zhu, Adv. Space Res. 40, 1491 (2007).

    Article  ADS  Google Scholar 

  71. D. Bhattacharya, Phys. Rep. 203, 1 (1991).

    Article  ADS  Google Scholar 

  72. I. Contopoulos, and A. Spitkovsky, Astrophys. J. 643, 1139 (2006).

    Article  ADS  Google Scholar 

  73. J. Li, A. Spitkovsky, and A. Tchekhovsky, Astrophys. J. 746, 60 (2012).

    Article  ADS  Google Scholar 

  74. A. Spitkovsky, Astrophys. J. 648, L51 (2006).

    Article  ADS  Google Scholar 

  75. A. Philippov, A. Tchekhovsky, and J. G. Li, Mon. Not. R. Astron. Soc. 441, 1879 (2014).

    Article  ADS  Google Scholar 

  76. C. Y. Ng, and V. M. Kaspi, AIP Conf. Proc. 1379, 60 (2011).

    Article  ADS  Google Scholar 

  77. J. Vink, and L. Kuiper. Mon. Not. R. Astron. Soc. 370, L14 (2006).

    Article  ADS  Google Scholar 

  78. H. Tong, L. M. Song, and R. X. Xu, Astrophys. J. 725, L196 (2010).

    Article  ADS  Google Scholar 

  79. H. Tong, L. M. Song, and R. X. Xu, Astrophys. J. 738, 31 (2011).

    Article  ADS  Google Scholar 

  80. C. Thompson, M. Lyutikov, and S. R. Kulkarni, Astrophys. J. 574, 332 (2002).

    Article  ADS  Google Scholar 

  81. H. Tong, and R. X. Xu, Res. Astron. Astrophys. 13, 1207 (2013).

    Article  ADS  Google Scholar 

  82. P. Scholz, V. M. Kaspi, and A. Cumming, Astrophys. J. 786, 62 (2014).

    Article  ADS  Google Scholar 

  83. N. Rea, P. Esposito, J. A. Pons, R. Turolla, D. Torres, and G. Lsrael, Astrophys. J. 775, L34 (2013).

    Article  ADS  Google Scholar 

  84. F. Coti Zelti, N. Rea, A. Papitto, D. Vigano, J. A. Pons, and R. Turolla, Mon. Not. R. Astron. Soc. 449, 2685 (2015).

    Article  ADS  Google Scholar 

  85. H. Tong, and R. X. Xu, Int. J. Mod. Phys. 20, 15 (2011).

    Article  ADS  Google Scholar 

  86. R. X. Xu, Adv. Space Res. 40, 1453 (2007).

    Article  ADS  Google Scholar 

  87. Z. X.Wang, D. Chakrabarty, and D. L. Kaplan, Nature 440, 772 (2006).

    Article  ADS  Google Scholar 

  88. L. Fu, and X. D. Li, Astrophys. J. 775, 124 (2013).

    Article  ADS  Google Scholar 

  89. X. W. Liu, R. X. Xu, G. J. Qiao, J. L. Han, and H. Tong, Res. Astron. Astrophys. 14, 85 (2014).

    Article  ADS  Google Scholar 

  90. X. D. Li, Astrophys. J. 646, L139 (2006).

    Article  ADS  Google Scholar 

  91. M. A. Alpar, Astrohys. J. 554, 1245 (2001).

    Article  ADS  Google Scholar 

  92. P. Chatterjee, L. Hernquist, and R. Narayan, Astrophys. J. 534, 373 (2000).

    Article  ADS  Google Scholar 

  93. M. A. Alpar, U. Ertan, and S. Caliskan, Astrophys. J. 732, L4 (2011).

    Article  ADS  Google Scholar 

  94. J. I. Katz, Astrophys. Space Sci. 349, 611 (2014).

    Article  ADS  Google Scholar 

  95. S. Mereghetti, Astron. Astrophys. Rev. 15, 225 (2008).

    Article  ADS  Google Scholar 

  96. J. G. Lu, R. X. Xu, and H. Feng, Chin. Phys. Lett. 30, 059501 (2013).

    Article  ADS  Google Scholar 

  97. X. W. Liu, X. S. Na, R. X. Xu, R. X. Qiao, and J. Guo, Chin. Phys. Lett. 28, 019701 (2011).

    Article  ADS  Google Scholar 

  98. A. M. Beloborodov, Astrophys. J. 703, 104 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Tong.

Additional information

Recommended by RenXin Xu (Associate Editor-in-Chief)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, H. Pulsar braking: magnetodipole vs. wind. Sci. China Phys. Mech. Astron. 59, 619501 (2016). https://doi.org/10.1007/s11433-015-5752-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5752-x

Keywords

Navigation