Skip to main content

Advertisement

Log in

KSC-N: Clustering of Hierarchical Time Profile Data

  • Published:
Psychometrika Aims and scope Submit manuscript

An Erratum to this article was published on 08 August 2016

Abstract

Quite a few studies in the behavioral sciences result in hierarchical time profile data, with a number of time profiles being measured for each person under study. Associated research questions often focus on individual differences in profile repertoire, that is, differences between persons in the number and the nature of profile shapes that show up for each person. In this paper, we introduce a new method, called KSC-N, that parsimoniously captures such differences while neatly disentangling variability in shape and amplitude. KSC-N induces a few person clusters from the data and derives for each person cluster the types of profile shape that occur most for the persons in that cluster. An algorithm for fitting KSC-N is proposed and evaluated in a simulation study. Finally, the new method is applied to emotional intensity profile data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Before moving this time profile, we check whether this time profile is the only profile in its current profile cluster. If this is the case we move on to the time profile that fits its current cluster the second least, and so on.

  2. Again, taking into account the sizes of the person clusters (see footnote 1).

  3. As the beta distribution is only defined on the interval [0 1], we evaluate the probability density function in J points equally distributed between 0 and 1. These J points form the time points of the reference profile.

  4. On average, the mean congruence amounts to.38 for low congruence data sets and.81 for high congruence data sets.

  5. Participants also answered a number of appraisal and regulation questions regarding the emotional episode, but as we focus on individual differences these are not relevant for this study.

  6. Participants filled out additional trait questionnaires measuring fear and stress (DASS-21), self-esteem (JVGG), neuroticism and extraversion (NEO-FFI), life satisfaction (SWLS), and positive and negative affect (PANAS). Our focus, however, lies with depression

References

  • Brusco, M. J., & Cradit, J. D. (2001). A variable selection heuristic for K-means clustering. Psychometrika, 66, 249–270.

    Article  Google Scholar 

  • Brusco, M. J., & Cradit, J. D. (2005). ConPar: A method for identifying groups of concordant subject proximity matrices for subsequent multidimensional scaling analyses. Journal of Mathematical Psychology, 49, 142–154.

    Article  Google Scholar 

  • Catts, H. W., Adlof, S. M., Hogan, T., & Weismer, S. E. (2005). Are specific language impairment and dyslexia distinct disorders? Journal of Speech, Language, and Hearing Research: JSLHR, 48, 1378.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceulemans, E., Van Mechelen, I., & Leenen, I. (2007). The local minima problem in hierarchical classes analysis: An evaluation of a simulated annealing algorithm and various multistart procedures. Psychometrika, 72, 377–391.

    Article  Google Scholar 

  • Davidson, R. J. (1998). Affective style and affective disorders: Perspectives from affective neuroscience. Cognition and Emotion, 12, 307–330.

    Article  Google Scholar 

  • De Roover, K., Ceulemans, E., Timmerman, M. E., Nezlek, J. B., & Onghena, P. (2013). Modeling differences in the dimensionality of multiblock data by means of clusterwise simultaneous component analysis. Psychometrika, 78, 648–668.

    Article  PubMed  Google Scholar 

  • De Roover, K., Ceulemans, E., Timmerman, M. E., Vansteelandt, K., Stouten, J., & Onghena, P. (2012). Clusterwise simultaneous component analysis for analyzing structural differences in multivariate multiblock data. Psychological Methods, 17, 100–119.

    Article  PubMed  Google Scholar 

  • De Roover, K., Timmerman, M. E., Mesquita, B., & Ceulemans, E. (2013). Common and cluster-specific simultaneous component analysis. PLoS ONE, 8(e62280), 1–14.

    Google Scholar 

  • Ehlers, A., & Clark, D. M. (2000). A cognitive model of posttraumatic stress disorder. Behaviour Research and Therapy, 38, 319–345.

    Article  PubMed  Google Scholar 

  • Frijda, N. H. (2007). The laws of emotion. Mahwah, NJ: Lawrence Erlbaum Associates Inc.

    Google Scholar 

  • Haberman, S. J. (1997). Maximum likelihood estimates in exponential response models. The Annals of Statistics, 5, 815–841.

    Article  Google Scholar 

  • Haven, S., & ten Berge, J. M. F. (1977). Tucker’s coefficient of congruence as a measure of factorial invariance: An empirical study. Heymans Bulletin 290 EX, unpublished report by the Department of Psychology, University of Groningen.

  • Heylen, J., Verduyn, P., Van Mechelen, I., & Ceulemans, E. (2014). Variability in anger intensity profiles: Structure and predictive basis. Cognition & Emotion, 1–10. [Epub ahead of print]

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.

    Article  Google Scholar 

  • Hubert, M., Rousseeuw, P. J., & Vanden Branden, K. (2005). ROBPCA: A new approach to robust principal component analysis. Technometrics, 47, 64–79.

    Article  Google Scholar 

  • Jones, B. L., & Nagin, D. S. (2007). Advances in group-based trajectory modeling and an SAS procedure for estimating them. Sociological Methods and Research, 35, 542–571.

    Article  Google Scholar 

  • Kuppens, P., Allen, N. B., & Sheeber, L. B. (2010). Emotional inertia and psychological maladjustment. Psychological Science, 21, 984–991.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuppens, P., Stouten, J., & Mesquita, B. (2009). Individual differences in emotion components and dynamics: Introduction to the special issue. Cognition and Emotion, 23, 1249–1258.

    Article  Google Scholar 

  • Lieb, K., Zanarini, M. C., Schmahl, C., Linehan, M. M., & Bohus, M. (2004). Borderline personality disorder. The Lancet, 364, 453–461.

    Article  Google Scholar 

  • Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behaviour Research and Therapy, 33(3), 335–343.

    Article  PubMed  Google Scholar 

  • Milligan, G. W., Soon, S. C., & Sokol, L. M. (1983). The effect of cluster size, dimensionality, and the number of clusters on recovery of true cluster structure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5, 40–47.

    Article  PubMed  Google Scholar 

  • Palardy, G. J., & Vermunt, J. K. (2010). Multilevel growth mixture models for classifying groups. Journal of Educational and Behavioral Statistics, 35, 532–565.

    Article  Google Scholar 

  • Radloff, L. S. (1977). The CES-D scale a self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385–401.

    Article  Google Scholar 

  • Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis. New York, NY: Springer.

    Book  Google Scholar 

  • Siegle, G. J., Granholm, E., Ingram, R. E., & Matt, G. E. (2001). Pupillary and reaction time measures of sustained processing of negative information in depression. Biological Psychiatry, 49, 624–636.

    Article  PubMed  Google Scholar 

  • Siegle, G. J., Steinhauer, S. R., Thase, M. E., Stenger, V. A., & Carter, C. S. (2002). Can’t shake that feeling: Event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biological Psychiatry, 51, 693–707.

    Article  PubMed  Google Scholar 

  • Sonnemans, J., & Frijda, N. H. (1994). The structure of subjective emotional intensity. Cognition and Emotion, 8, 329–350.

    Article  Google Scholar 

  • Steinley, D. (2003). Local optima in K-means clustering: What you don’t know may hurt you. Psychological Methods, 8, 294–304.

    Article  PubMed  Google Scholar 

  • Thompson, R. J., Mata, J., Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Gotlib, I. H. (2012). The everyday emotional experience of adults with major depressive disorder: Examining emotional instability, inertia, and reactivity. Journal of Abnormal Psychology, 121, 819.

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmerman, M. E., Ceulemans, E., Kiers, H. A. L., & Vichi, M. (2010). Factorial and reduced K-means reconsidered. Computational Statistics and Data Analysis, 54, 1858–1871.

    Article  Google Scholar 

  • Vandewalle, E., Boets, B., Boons, T., Ghesquière, P., & Zink, I. (2012). Oral language and narrative skills in children with specific language impairment with and without literacy delay: A three-year longitudinal study. Research in Developmental Disabilities, 33(6), 1857–1870.

    Article  PubMed  Google Scholar 

  • Verduyn, P., Van Mechelen, I., & Frederix, E. (2012). Determinants of the shape of emotion intensity profiles. Cognition and Emotion, 26, 1486–1495.

  • Verduyn, P., Van Mechelen, I., Tuerlinckx, F., Meers, K., & Van Coillie, H. (2009). Intensity profiles of emotional experience over time. Cognition and Emotion, 23, 1427–1443.

    Article  Google Scholar 

  • Wang, M., & Bodner, T. E. (2007). Growth mixture modeling identifying and predicting unobserved subpopulations with longitudinal data. Organizational Research Methods, 10, 635–656.

    Article  Google Scholar 

  • Wilderjans, T. F., & Ceulemans, E. (2013). Clusterwise Parafac to identify heterogeneity in three-way data. Chemometrics and Intelligent Laboratory Systems, 129, 87–97.

    Article  Google Scholar 

  • World Health Organization (2008). Integrating mental health into primary care: A global perspective. World Health Organization.

  • Yang, J., & Leskovec, J. (2011). Patterns of temporal variation in online media. Proceedings of the fourth ACM international conference on Web search and data mining, pp. 177–186.

Download references

Acknowledgments

This research was supported by Grant GOA/15/003 from the Research Fund of the University of Leuven. Philippe Verduyn is a Post-Doctoral Fellow of the Research Foundation—Flanders (FWO). The research leading to the results reported in this paper was supported in part by the Interuniversity Attraction Poles program financed by the Belgian government (IAP/P7/06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joke Heylen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heylen, J., Van Mechelen, I., Verduyn, P. et al. KSC-N: Clustering of Hierarchical Time Profile Data. Psychometrika 81, 411–433 (2016). https://doi.org/10.1007/s11336-014-9433-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-014-9433-x

Keywords

Navigation