Skip to main content
Log in

Planetary Radio Interferometry and Doppler Experiment (PRIDE) of the JUICE Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a multi-purpose experimental technique aimed at enhancing the science return of planetary missions. The technique exploits the science payload and spacecraft service systems without requiring a dedicated onboard instrumentation or imposing on the existing instrumentation any special for PRIDE requirements. PRIDE is based on the near-field phase-referencing Very Long Baseline Interferometry (VLBI) and evaluation of the Doppler shift of the radio signal transmitted by spacecraft by observing it with multiple Earth-based radio telescopes. The methodology of PRIDE has been developed initially at the Joint Institute for VLBI ERIC (JIVE) for tracking the ESA’s Huygens Probe during its descent in the atmosphere of Titan in 2005. From that point on, the technique has been demonstrated for various planetary and other space science missions. The estimates of lateral position of the target spacecraft are done using the phase-referencing VLBI technique. Together with radial Doppler estimates, these observables can be used for a variety of applications, including improving the knowledge of the spacecraft state vector. The PRIDE measurements can be applied to a broad scope of research fields including studies of atmospheres through the use of radio occultations, the improvement of planetary and satellite ephemerides, as well as gravity field parameters and other geodetic properties of interest, and estimations of interplanetary plasma properties. This paper presents the implementation of PRIDE as a component of the ESA’s Jupiter Icy Moons Explorer (JUICE) mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. https://gitlab.com/gofrito/sctracker/, accessed on 2023.06.20.

  2. http://www.aips.nrao.edu/, accessed on 2023.06.20.

  3. https://casa.nrao.edu/, accessed on 2023.06.20.

  4. The conventional unit of flux density in radio astronomy is called jansky (Jy); \(1\text{ Jy }= 10^{-26}\text{ W}\,\text{m}^{-2}\text{ Hz}^{-1}\).

  5. http://astrogeo.org/rfc/, accessed on 2023.07.04.

  6. https://juicesoc.esac.esa.int/tm/?trajectory=CREMA_5_1_150lb_23_1//, accessed 2023.06.15.

  7. https://www.cosmos.esa.int/web/spice//, accessed on 2023.06.20.

  8. https://www.cosmos.esa.int/web/spice/about-webgeocalc, accessed on 2023.06.20.

  9. https://juicesoc.esac.esa.int/event_tool//, accessed on 2023.06.15.

  10. https://gitlab.com/gofrito/makekey, accessed 2023.07.04.

  11. pySCHED (https://github.com/jive-vlbi/sched) is built upon the NRAO SCHED (http://www.aoc.nrao.edu/software/sched/index.html), both accessed on 2023.07.04.

  12. https://spiftp.esac.esa.int/data/SPICE/JUICE/kernels/spk/, accessed 2023.07.04.

  13. https://naif.jpl.nasa.gov/pub/naif/EUROPACLIPPER/kernels/spk/, accessed 2023.07.04.

  14. Documentation: https://docs.tudat.space, Source code: https://github.com/tudat-team/, accessed 2023.07.04.

References

  • Altobelli N, Cardesin A, Costa M, Frew D, Lorente R, Vallat C, Witasse O, Christian E (2016) The science operations of the esa juice mission. In: AAS/Division for planetary sciences meeting abstracts # 48, vol 48, pp 123–25

    Google Scholar 

  • Altobelli N et al. (2024) The JUICE ground segment. Space Sci Rev 220

  • Antuñano A, Cosentino RG, Fletcher LN, Simon AA, Greathouse TK, Orton GS (2021) Fluctuations in Jupiter’s equatorial stratospheric oscillation. Nat Astron 5:71–77. https://doi.org/10.1038/s41550-020-1165-5

    Article  ADS  Google Scholar 

  • Bauer S, Hussmann H, Oberst J, Dirkx D, Mao D, Neumann GA, Mazarico E, Torrence M, McGarry J, Smith D et al. (2016) Demonstration of orbit determination for the lunar reconnaissance orbiter using one-way laser ranging data. Planet Space Sci 129:32–46

    Article  ADS  Google Scholar 

  • Bauer S, Hussmann H, Oberst J, Dirkx D, Mao D, Neumann GA, Mazarico E, Torrence M, McGarry J, Smith D et al. (2017) Analysis of one-way laser ranging data to LRO, time transfer and clock characterization. Icarus 283:38–54

    Article  ADS  Google Scholar 

  • Beasley AJ, Conway JE (1995) VLBI phase-referencing. In: Zensus JA, Diamond PJ, Napier PJ (eds) Very long baseline interferometry and the VLBA. ASP Conference Series, vol 82, p 327

    Google Scholar 

  • Becker RH, White RL, Helfand DJ (1995) The FIRST survey: faint images of the radio sky at twenty centimeters. Astrophys J 450:559. https://doi.org/10.1086/176166

    Article  ADS  Google Scholar 

  • Bird MK, Allison M, Asmar SW, Atkinson DH, Avruch IM, Dutta-Roy R, Dzierma Y, Edenhofer P, Folkner WM, Gurvits LI, Johnston DV, Plettemeier D, Pogrebenko SV, Preston RA, Tyler GL (2005) The vertical profile of winds on Titan. Nature 438(7069):800–802. https://doi.org/10.1038/nature04060

    Article  ADS  Google Scholar 

  • Birnbaum J, Williams RS (2000) Physics and the information revolution. Phys Today 53(1):38–42. https://doi.org/10.1063/1.882936

    Article  ADS  Google Scholar 

  • Bocanegra-Bahamón TM, Molera Calvés G, Gurvits LI, Duev DA, Pogrebenko SV, Cimò G, Dirkx D, Rosenblatt P (2018) Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: a test case of the Mars Express Phobos Flyby. II. Doppler tracking: formulation of observed and computed values, and noise budget. Astron Astrophys 609:59. https://doi.org/10.1051/0004-6361/201731524. arXiv:1709.03419 [astro-ph.IM]

    Article  ADS  Google Scholar 

  • Bocanegra-Bahamón TM, Molera Calvés G, Gurvits LI, Cimò G, Dirkx D, Duev DA, Pogrebenko SV, Rosenblatt P, Limaye S, Cui L, Li P, Kondo T, Sekido M, Mikhailov AG, Kharinov MA, Ipatov AV, Wang W, Zheng W, Ma M, Lovell JEJ, McCallum JN (2019) Venus express radio occultation observed by PRIDE. Astron Astrophys 624:59. https://doi.org/10.1051/0004-6361/201833160. arXiv:1903.01582 [astro-ph.IM]

    Article  Google Scholar 

  • Border JS, Donivan FF, Finley SG, Hildebrand CE, Moultrie B, Skjerve LJ (1982) Determining spacecraft angular position with delta vlbi - the Voyager demonstration. In: Astrodynamics conference. AIAA-82-1471 https://doi.org/10.2514/6.1982-1471.

    Chapter  Google Scholar 

  • Boutonnet A, Langevin Y, Witasse O, Erd C (2024) Designing the JUICE trajectory. Space Sci Rev 220

  • Brown GW, Carr TD, Block WF (1968) Long-baseline interferometry of S-bursts from Jupiter. Astrophys Lett 1:89

    ADS  Google Scholar 

  • Brunn DL, Preston RA, Wu SC, Siegel HL, Brown DS, Christensen CS, Hilt DE (1978) Delta VLBI spacecraft tracking system demonstration. Part 1: design and planning. In: The Deep Space Network Progress Report 42-45, pp 111–132

    Google Scholar 

  • Buccino DR, Parisi M, Gramigna E, Gomez-Casajus L, Tortora P, Zannoni M, Caruso A, Park RS, Withers P, Steffes P, Hodges A, Levin S, Bolton S (2022) Ganymede’s ionosphere observed by a dual-frequency radio occultation with Juno. Geophys Res Lett 49(23):2022–098420. https://doi.org/10.1029/2022GL098420

    Article  Google Scholar 

  • Burns JA, Simonelli DP, Showalter MR, Hamilton DP, Porco CD, Throop H, Esposito LW (2004) Jupiter’s ring-moon system. In: Jupiter: the planet, satellites and magnetosphere 1, pp 185–218

    Google Scholar 

  • Cappuccio P, Notaro V, di Ruscio A, Iess L, Genova A, Durante D, di Stefano I, Asmar SW, Ciarcia S, Simone L (2020) Report on first inflight data of BepiColombo’s Mercury orbiter radio science experiment. IEEE Trans Aerosp Electron Syst 56(6):4984–4988

    Article  ADS  Google Scholar 

  • Cappuccio P, Di Benedetto M, Durante D, Iess L (2022) Callisto and Europa gravity measurements from JUICE 3GM experiment simulation. Planet Sci J 3(8):199

    Article  Google Scholar 

  • Carnielli G, Galand M, Leblanc F, Leclercq L, Modolo R, Beth A, Huybrighs HLF, Jia X (2019) First 3d test particle model of Ganymede’s ionosphere. Icarus 330:42–59. https://doi.org/10.1016/j.icarus.2019.04.016

    Article  ADS  Google Scholar 

  • Charlot P, Jacobs CS, Gordon D, Lambert S, de Witt A, Böhm J, Fey AL, Heinkelmann R, Skurikhina E, Titov O, Arias EF, Bolotin S, Bourda G, Ma C, Malkin Z, Nothnagel A, Mayer D, MacMillan DS, Nilsson T, Gaume R (2020) The third realization of the international celestial reference frame by very long baseline interferometry. Astron Astrophys 644:159. https://doi.org/10.1051/0004-6361/202038368. arXiv:2010.13625 [astro-ph.GA]

    Article  Google Scholar 

  • Costa M (2018) Spice for ESA planetary missions: geometry and visualization support to studies, operations and data analysis. In: European planetary science congress, vol 12

    Google Scholar 

  • Counselman CC III, Hinteregger HF, Shapiro II (1972) Astronomical applications of differential interferometry. Science 178(4061):607–608. https://doi.org/10.1126/science.178.4061.607

    Article  ADS  Google Scholar 

  • Counselman CC III, Gourevitch SA, King RW, Pettengill GH, Prinn RG, Shapiro II, Miller RB, Smith JR, Ramos R, Liebrecht P (1979) Wind velocities on Venus: vector determination by radio interferometry. Science 203(4382):805–806. https://doi.org/10.1126/science.203.4382.805

    Article  ADS  Google Scholar 

  • Curkendall DW, Border JS (2013) Delta-DOR: the One-Nanoradian Navigation Measurement System of the Deep Space Network — History, Architecture, and Componentry pp 1–46. Interplanetary Network Progress Report 42-193

  • De Pater I, Hamilton D, Showalter M, Throop H, Burns J (2018) The Rings of Jupiter. Planetary Ring Systems. Properties, Structure, and Evolution, 125–134

  • Deller AT, Middelberg E (2014) mJIVE-20: a survey for compact mJy radio objects with the very long baseline array. Astron J 147(1):14. https://doi.org/10.1088/0004-6256/147/1/14. arXiv:1310.8191 [astro-ph.CO]

    Article  ADS  Google Scholar 

  • Di Benedetto M, Ciarcia SS, Iess L, Kaspi Y, Mann SR, Shapira SA (2017) The 3GM radio science experiment on board the ESA JUICE mission. In: AGU fall meeting abstracts, vol 2017, pp 12–03

    Google Scholar 

  • Dirkx D, Lainey V, Gurvits LI, Visser PNAM (2016) Dynamical modelling of the Galilean moons for the JUICE mission. Planet Space Sci 134:82–95. https://doi.org/10.1016/j.pss.2016.10.011

    Article  ADS  Google Scholar 

  • Dirkx D, Gurvits LI, Lainey V, Lari G, Milani A, Cim�� G, Bocanegra-Bahamon TM, Visser PNAM (2017) On the contribution of PRIDE-JUICE to Jovian system ephemerides. Planet Space Sci 147:14–27. https://doi.org/10.1016/j.pss.2017.09.004. arXiv:1710.11506 [astro-ph.EP]

    Article  ADS  Google Scholar 

  • Dirkx D, Fayolle M, Garrett G, Avillez M, Cowan K, Cowan S, Encarnacao J, Lombrana CF, Gaffarel J, Hener J et al (2022) the open-source astrodynamics tudatpy software–overview for planetary mission design and science analysis. EPSC2022 (EPSC2022-253)

  • Dougherty M, Grasset O, Bunce E, Coustenis A, Titov D, Erd C, Blanc M, Coates A, Coradini A, Drossart P et al. (2011) Juice (Jupiter icy moon explorer): a European-led mission to the Jupiter system. In: EPSC-DPS joint meeting 2011, vol 2011, p 1343

    Google Scholar 

  • Duev DA, Molera Calvés G, Pogrebenko SV, Gurvits LI, Cimó G, Bocanegra Bahamon T (2012) Spacecraft VLBI and Doppler tracking: algorithms and implementation. Astron Astrophys 541:43. https://doi.org/10.1051/0004-6361/201218885. arXiv:1203.4408 [astro-ph.IM]

    Article  ADS  Google Scholar 

  • Duev DA, Zakhvatkin MV, Stepanyants VA, Molera Calvés G, Pogrebenko SV, Gurvits LI, Cimò G, Bocanegra Bahamón TM (2015) RadioAstron as a target and as an instrument: enhancing the space VLBI mission’s scientific output. Astron Astrophys 573:99. https://doi.org/10.1051/0004-6361/201424940. arXiv:1411.4576 [astro-ph.IM]

    Article  ADS  Google Scholar 

  • Duev DA, Pogrebenko SV, Cimò G, Molera Calvés G, Bocanegra Bahamón TM, Gurvits LI, Kettenis MM, Kania J, Tudose V, Rosenblatt P, Marty J-C, Lainey V, de Vicente P, Quick J, Nickola M, Neidhardt A, Kronschnabl G, Ploetz C, Haas R, Lindqvist M, Orlati A, Ipatov AV, Kharinov MA, Mikhailov AG, Lovell JEJ, McCallum JN, Stevens J, Gulyaev SA, Natush T, Weston S, Wang WH, Xia B, Yang WJ, Hao L-F, Kallunki J, Witasse O (2016) Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: a test case of the Mars express Phobos fly-by. Astron Astrophys 593:34. https://doi.org/10.1051/0004-6361/201628869. arXiv:1606.05841 [astro-ph.IM]

    Article  Google Scholar 

  • Ellis J, McElrath TP (1986) Vega pathfinder navigation for Giotto Halley encounter - an application of VLBI techniques. In: 15th international symposium on space technology and science, vol 2, pp 1781–1790

    Google Scholar 

  • Fayolle M, Dirkx D, Visser P, Lainey V (2021) Analytical framework for mutual approximations-derivation and application to Jovian satellites. Astron Astrophys 652:93

    Article  ADS  Google Scholar 

  • Fayolle M, Dirkx D, Lainey V, Gurvits LI, Visser PNAM (2022) Decoupled and coupled moons’ ephemerides estimation strategies application to the JUICE mission. Planet Space Sci 219:105531. https://doi.org/10.1016/j.pss.2022.105531

    Article  Google Scholar 

  • Fayolle M, Lainey V, Dirkx D, Gurvits LI, Cimo G, Bolton S (2023a) Spacecraft VLBI tracking to enhance stellar occultations astrometry of planetary satellites. Astron Astrophys 676:L6. https://doi.org/10.1051/0004-6361/202347019

    Article  ADS  Google Scholar 

  • Fayolle M, Magnanini A, Lainey V, Dirkx D, Zannoni M, Tortora P (2023b) Combining astrometry and JUICE – Europa Clipper radioscience to improve the Galilean moons ephemerides. Astron Astrophys 677:A42. https://doi.org/10.1051/0004-6361/202347065

    Article  ADS  Google Scholar 

  • Fienga A, Viswanathan V, Deram P, Di Ruscio A, Bernus L, Laskar J, Gastineau M, Rambaux N, Minazzoli O, Durante D, Iess L (2020) INPOP new release: INPOP19a. In: Bizouard C (ed) Astrometry, Earth rotation, and reference systems in the GAIA era, pp 293–297

    Google Scholar 

  • Flasar FM, Kunde VG, Achterberg RK, Conrath BJ, Simon-Miller AA, Nixon CA, Gierasch PJ, Romani PN, Bézard B, Irwin P, Bjoraker GL, Brasunas JC, Jennings DE, Pearl JC, Smith MD, Orton GS, Spilker LJ, Carlson R, Calcutt SB, Read PL, Taylor FW, Parrish P, Barucci A, Courtin R, Coustenis A, Gautier D, Lellouch E, Marten A, Prangé R, Biraud Y, Fouchet T, Ferrari C, Owen TC, Abbas MM, Samuelson RE, Raulin F, Ade P, Césarsky CJ, Grossman KU, Coradini A (2004) An intense stratospheric jet on Jupiter. Nature 427(6970):132–135. https://doi.org/10.1038/nature02142

    Article  ADS  Google Scholar 

  • Fletcher LN, Greathouse TK, Orton GS, Sinclair JA, Giles RS, Irwin PGJ, Encrenaz T (2016) Mid-infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES. Icarus 278:128–161. https://doi.org/10.1016/j.icarus.2016.06.008. arXiv:1606.05498 [astro-ph.EP]

    Article  ADS  Google Scholar 

  • Fletcher LN, Cavalié T, Grassi D, Hueso R, Lara LM, Kaspi Y, Galanti E, Greathouse TK, Molyneux PM, Galand M, Vallat C, Witasse O, Lorente R, Hartogh P, Poulet F, Langevin Y, Palumbo P, Gladstone GR, Retherford KD, Dougherty MK, Wahlund J-E, Barabash S, Iess L, Bruzzone L, Hussmann H, Gurvits LI, Santolik O, Kolmasova I, Fischer G, Müller-Wodarg I, Piccioni G, Fouchet T, Gérard J-C, Sánchez-Lavega A, Irwin PGJ, Grodent D, Altieri F, Mura A, Drossart P, Kammer J, Giles R, Cazaux S, Jones G, Smirnova M, Lellouch E, Medvedev AS, Moreno R, Rezac L, Coustenis A, Costa M (2023) Jupiter science enabled by ESA’s Jupiter icy moons explorer. Space Sci Rev 219(7):53. https://doi.org/10.1007/s11214-023-00996-6. arXiv:2304.10229 [astro-ph.EP]

    Article  ADS  Google Scholar 

  • Fomalont EB, Goss WM, Beasley AJ, Chatterjee S (1999) Sub-milliarcsecond precision of pulsar motions: using in-beam calibrators with the VLBA. Astron J 117(6):3025–3030. https://doi.org/10.1086/300877. arXiv:astro-ph/9903042 [astro-ph]

    Article  ADS  Google Scholar 

  • Fomalont E, Martin-Mur T, Border J, Naudet C, Lanyi G, Romney J, Dhawan V, Geldzahler B (2010) Spacecraft navigation using the VLBA. In: 10th European VLBI network symposium and EVN users meeting: VLBI and the new generation of radio arrays, vol 10, p 66. https://doi.org/10.22323/1.125.0066

    Chapter  Google Scholar 

  • Frey S, Gurvits LI, Paragi Z, Mosoni L, Garrett MA, Garrington ST (2008) Deep extragalactic VLBI-optical survey (DEVOS). II. Efficient VLBI detection of SDSS quasars. Astron Astrophys 477(3):781–787. https://doi.org/10.1051/0004-6361:20078711. arXiv:0711.0862 [astro-ph]

    Article  ADS  Google Scholar 

  • Friedson AJ (1999) New observations and modelling of a QBO-like oscillation in Jupiter’s stratosphere. Icarus 137(1):34–55. https://doi.org/10.1006/icar.1998.6038

    Article  ADS  Google Scholar 

  • Garrington ST, Garrett MA, Polatidis A (1999) A VLBI and MERLIN survey of faint, compact radio sources. New Astron Rev 43(8–10):629–632. https://doi.org/10.1016/S1387-6473(99)00067-6. arXiv:astro-ph/9906158 [astro-ph]

    Article  ADS  Google Scholar 

  • Goossens S, Matsumoto K, Liu Q, Kikuchi F, Sato K, Hanada H, Ishihara Y, Noda H, Kawano N, Namiki N, Iwata T, Lemoine FG, Rowlands DD, Harada Y, Chen M (2011) Lunar gravity field determination using SELENE same-beam differential VLBI tracking data. J Geod 85(4):205–228. https://doi.org/10.1007/s00190-010-0430-2

    Article  ADS  Google Scholar 

  • Gordon D, de Witt A, Jacobs CS (2023) Current CRF status at X/S and K bands. In: Armstrong KL, Behrend D, Baver KD (eds) International VLBI service for geodesy and astrometry 2022 general meeting proceedings, pp 263–264

    Google Scholar 

  • Grasset O, Dougherty M, Coustenis A, Bunce E, Erd C, Titov D, Blanc M, Coates A, Drossart P, Fletcher L et al. (2013) JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet Space Sci 78:1–21

    Article  ADS  Google Scholar 

  • Greenberg R (2010) The icy Jovian satellites after the Galileo mission. Rep Prog Phys 73(3):036801

    Article  ADS  Google Scholar 

  • Heller R, Marleau G-D, Pudritz RE (2015) The formation of the Galilean moons and Titan in the grand tack scenario. Astron Astrophys 579:4

    Article  Google Scholar 

  • Högbom JA (1974) Aperture synthesis with a non-regular distribution of interferometer baselines. Astron Astrophys Suppl Ser 15:417

    ADS  Google Scholar 

  • Iess L (2013) 3GM: gravity and geophysics of Jupiter and the Galilean moons. In: European planetary science congress, pp 2013–491

    Google Scholar 

  • Iess L et al. (2024) JUICE 3GM experiment. Space Sci Rev 220

  • Jones DL, Fomalont E, Dhawan V, Romney J, Folkner WM, Lanyi G, Border J, Jacobson RA (2011) Very long baseline array astrometric observations of the Cassini spacecraft at Saturn. Astron J 141(2):29. https://doi.org/10.1088/0004-6256/141/2/29. arXiv:1012.0264 [astro-ph.EP]

    Article  ADS  Google Scholar 

  • Keimpema A, Kettenis MM, Pogrebenko SV, Campbell RM, Cimó G, Duev DA, Eldering B, Kruithof N, van Langevelde HJ, Marchal D, Molera Calvés G, Ozdemir H, Paragi Z, Pidopryhora Y, Szomoru A, Yang J (2015) The SFXC software correlator for very long baseline interferometry: algorithms and implementation. Exp Astron 39(2):259–279. https://doi.org/10.1007/s10686-015-9446-1. arXiv:1502.00467 [astro-ph.IM]

    Article  ADS  Google Scholar 

  • King RW, Counselman CC III, Shapiro II (1976) Lunar dynamics and selenodesy: results from analysis of VLBI and laser data. J Geophys Res 81(B35):6251–6256. https://doi.org/10.1029/JB081i035p06251

    Article  ADS  Google Scholar 

  • Kummamuru P, Molera Calvés G, Cimò G, Pogrebenko SV, Bocanegra-Bahamón TM, Duev DA, Md Said MD, Edwards J, Ma M, Quick J, Neidhardt A, de Vicente P, Haas R, Kallunki J, Maccaferri G, Colucci G, Yang WJ, Hao LF, Weston S, Kharinov MA, Mikhailov AG, Jung T (2023) A monitoring campaign (2013–2020) of ESA’s Mars Express to study interplanetary plasma scintillation. Publ Astron Soc Austral 40:E013. https://doi.org/10.1017/pasa.2023.12. arXiv:2302.13898 [physics.space-ph]

    Article  ADS  Google Scholar 

  • Lacy M, Baum SA, Chandler CJ, Chatterjee S, Clarke TE, Deustua S, English J, Farnes J, Gaensler BM, Gugliucci N, Hallinan G, Kent BR, Kimball A, Law CJ, Lazio TJW, Marvil J, Mao SA, Medlin D, Mooley K, Murphy EJ, Myers S, Osten R, Richards GT, Rosolowsky E, Rudnick L, Schinzel F, Sivakoff GR, Sjouwerman LO, Taylor R, White RL, Wrobel J, Andernach H, Beasley AJ, Berger E, Bhatnager S, Birkinshaw M, Bower GC, Brandt WN, Brown S, Burke-Spolaor S, Butler BJ, Comerford J, Demorest PB, Fu H, Giacintucci S, Golap K, Güth T, Hales CA, Hiriart R, Hodge J, Horesh A, Ivezić Ž, Jarvis MJ, Kamble A, Kassim N, Liu X, Loinard L, Lyons DK, Masters J, Mezcua M, Moellenbrock GA, Mroczkowski T, Nyland K, O’Dea CP, O’Sullivan SP, Peters WM, Radford K, Rao U, Robnett J, Salcido J, Shen Y, Sobotka A, Witz S, Vaccari M, van Weeren RJ, Vargas A, Williams PKG, Yoon I (2020) The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science case and survey design. Publ Astron Soc Pac 132(1009):035001. https://doi.org/10.1088/1538-3873/ab63eb. arXiv:1907.01981 [astro-ph.IM]

    Article  ADS  Google Scholar 

  • Lainey V, Arlot J-E, Karatekin Ö, Van Hoolst T (2009) Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459(7249):957–959. https://doi.org/10.1038/nature08108

    Article  ADS  Google Scholar 

  • Lanyi G, Bagri DS, Border JS (2007) Angular position determination of spacecraft by radio interferometry. Proc IEEE 95(11):2193–2201. https://doi.org/10.1109/JPROC.2007.905183

    Article  ADS  Google Scholar 

  • Lebreton J-P, Witasse O, Sollazzo C, Blancquaert T, Couzin P, Schipper A-M, Jones JB, Matson DL, Gurvits LI, Atkinson DH, Kazeminejad B, Pérez-Ayúcar M (2005) An overview of the descent and landing of the Huygens probe on Titan. Nature 438(7069):758–764. https://doi.org/10.1038/nature04347

    Article  ADS  Google Scholar 

  • Leovy CB, Friedson AJ, Orton GS (1991) The quasiquadrennial oscillation of Jupiter’s equatorial stratosphere. Nature 354(6352):380–382. https://doi.org/10.1038/354380a0

    Article  ADS  Google Scholar 

  • Li P, Hu X, Huang Y, Wang G, Jiang D, Zhang X, Cao J, Xin N (2012) Orbit determination for Chang’E-2 lunar probe and evaluation of lunar gravity models. Sci China, Phys Mech Astron 55(3):514–522. https://doi.org/10.1007/s11433-011-4596-2

    Article  ADS  Google Scholar 

  • Liu Q, Chen M, Xiong W, Qian Z, Li J, Hao W, Wang G, Zheng W, Guan D, Zhu R, Wang W, Zhang X, Jiang D, Shu F, Ping J, Hong X (2010) Relative position determination of a lunar rover using high-accuracy multi-frequency same-beam VLBI. Sci China, Phys Mech Astron 53(3):571–578. https://doi.org/10.1007/s11433-010-0147-5

    Article  ADS  Google Scholar 

  • Liu Q, Huang Y, Shu F, Wang G, Zhang J, Chen Z, Li P, Ma M, Hong X (2022) VLBI technique for the orbit determination of Tianwen-1. Sci Sin Phys Mech Astron 52(3):239507. https://doi.org/10.1360/SSPMA-2021-0204

    Article  Google Scholar 

  • Lorente R, Altobelli N, Vallat C, Munoz C, Andres R, Cardesin A, Witasse O, Erd C (2017) The ESA JUICE mission: the science and the science operations. In: EGU general assembly conference abstracts, p 14611

    Google Scholar 

  • Magnanini A, Zannoni M, Gomez Casajus L, Tortora P, Lainey V, Mazarico E, Iess L (2023) Joint analysis of JUICE and Europa Clipper tracking data to study the Jovian system ephemerides and dissipative parameters. Astron Astrophys. In press

  • Majid WA, Bagri DS (2008) Precision spacecraft tracking using in-beam phase referencing. In: 2008 IEEE aerospace conference. pp 1–7

    Google Scholar 

  • Masters A et al. (2024) Magnetosphere and Plasma Science with the Jupiter Icy Moons Explorer. Space Sci Rev 220

  • Max-Moerbeck W, Brisken WF, Romney JD (2015) Near real-time astrometry for spacecraft navigation with the VLBA: a demonstration with the Mars reconnaissance orbiter and odyssey. Publ Astron Soc Pac 127(948):161. https://doi.org/10.1086/680013. arXiv:1501.01045 [astro-ph.IM]

    Article  ADS  Google Scholar 

  • Mazarico E, Buccino D, Castillo-Rogez J, Dombard AJ, Genova A, Hussmann H, Kiefer WS, Lunine JI, McKinnon WB, Nimmo F et al. (2023) The Europa Clipper gravity and radio science investigation. Space Sci Rev 219:30. https://doi.org/10.1007/s11214-023-00972-0

    Article  ADS  Google Scholar 

  • Melbourne WG, Curkendall DW (1977) Radio metric direction finding - a new approach to deep space navigation. In: AAS/AIAA astrodynamics specialists conference, Jackson Hole, Wyoming. https://doi.org/10.2514/6.1978-3188

    Chapter  Google Scholar 

  • Molera Calvés G, Pogrebenko SV, Cimò G, Duev DA, Bocanegra-Bahamón TM, Wagner JF, Kallunki J, de Vicente P, Kronschnabl G, Haas R, Quick J, Maccaferri G, Colucci G, Wang WH, Yang WJ, Hao LF (2014) Observations and analysis of phase scintillation of spacecraft signal on the interplanetary plasma. Astron Astrophys 564:4. https://doi.org/10.1051/0004-6361/201322925. arXiv:1403.2414 [astro-ph.EP]

    Article  Google Scholar 

  • Molera Calvés G, Kallio E, Cimò G, Quick J, Duev DA, Bocanegra-Bahamón T, Nickola M, Kharinov MA, Mikhailov AG (2017) Analysis of an interplanetary coronal mass ejection by a spacecraft radio signal: a case study. Space Weather 15(11):1523–1534. https://doi.org/10.1002/2017SW001701

    Article  ADS  Google Scholar 

  • Molera Calvés G, Pogrebenko SV, Wagner JF, Cimò G, Gurvits LI, Bocanegra-Bahamón TM, Duev DA, Nunes NV (2021) High spectral resolution multi-tone Spacecraft Doppler tracking software: Algorithms and implementations, 2111-05622. Publ Astron Soc Austral 38:E065. https://doi.org/10.1017/pasa.2021.56. arXiv:2111.05622 [astro-ph.IM]

    Article  ADS  Google Scholar 

  • Moore GE (1965) Cramming more components onto integrated circuits. McGraw-Hill, New York

    Google Scholar 

  • Ondrasik VJ, Rourke KH (1971) Applications of quasi-VLBI tracking data types to the zero declination and process noise problems. In: AAS/AIAA astrodynamics specialists conference, Fort Lauderdale, Fla. AAS paper 71-399

    Google Scholar 

  • Orton GS, Friedson AJ, Caldwell J, Hammel HB, Baines KH, Bergstralh JT, Martin TZ, Malcom ME, West RA, Golisch WF, Griep DM, Kaminski CD, Tokunaga AT, Baron R, Shure M (1991) Thermal maps of Jupiter - spatial organization and time dependence of stratospheric temperatures, 1980 to 1990. Science 252(5005):537–542. https://doi.org/10.1126/science.252.5005.537

    Article  ADS  Google Scholar 

  • Pallichadath V, Gurvits LI, Dirkx D, Boven P, Cimo P, Fayolle MS, Fogasy J, Frey S, Molera Calvés G, Perger K, Md Said NM, Vermeersen LLA (2023) Planetary Radio Interferometry and Doppler Experiment as an operational component of the Jupiter Icy Moons Explorer mission. Adv Space Res, submitted

  • Paragi Z, Godfrey L, Reynolds C, Rioja MJ, Deller A, Zhang B, Gurvits L, Bietenholz M, Szomoru A, Bignall HE, Boven P, Charlot P, Dodson R, Frey S, Garrett MA, Imai H, Lobanov A, Reid MJ, Ros E, van Langevelde HJ, Zensus AJ, Zheng XW, Alberdi A, Agudo I, An T, Argo M, Beswick R, Biggs A, Brunthaler A, Campbell B, Cimo G, Colomer F, Corbel S, Conway JE, Cseh D, Deane R, Falcke HDE, Gawronski M, Gaylard M, Giovannini G, Giroletti M, Goddi C, Goedhart S, Gómez JL, Gunn A, Kharb P, Kloeckner HR, Koerding E, Kovalev Y, Kunert-Bajraszewska M, Lindqvist M, Lister M, Mantovani F, Marti-Vidal I, Mezcua M, McKean J, Middelberg E, Miller-Jones JCA, Moldon J, Muxlow T, O’Brien T, Perez-Torres M, Pogrebenko SV, Quick J, Rushton A, Schilizzi R, Smirnov O, Sohn BW, Surcis G, Taylor GB, Tingay S, Tudose VM, van der Horst A, van Leeuwen J, Venturi T, Vermeulen R, Vlemmings WHT, de Witt A, Wucknitz O, Yang J, Gabänyi K, Jung T (2015) Very long baseline interferometry with the SKA. Advancing Astrophysics with the Square Kilometre Array (AASKA14), p 143. https://doi.org/10.22323/1.215.0143

    Chapter  Google Scholar 

  • Paranicas C, Mauk BH, Haggerty DK, Clark G, Kollmann P, Rymer AM, Bonfond B, Dunn WR, Ebert RW, Gladstone GR, Roussos E, Krupp N, Bagenal F, Levin SM, Connerney JEP, Bolton SJ (2018) Intervals of intense energetic electron beams over Jupiter’s poles. J Geophys Res Space Phys 123(3):1989–1999. https://doi.org/10.1002/2017JA025106

    Article  ADS  Google Scholar 

  • Park RS, Folkner WM, Williams JG, Boggs DH (2021) The JPL planetary and lunar ephemerides DE440 and DE441. Astron J 161(3), 105. https://doi.org/10.3847/1538-3881/abd414

    Article  ADS  Google Scholar 

  • Peale SJ (1999) Origin and evolution of the natural satellites. Annu Rev Astron Astrophys 37(1):533–602

    Article  ADS  Google Scholar 

  • Petit G, Luzum B (2010) IERS conventions (2010). IERS Tech Note 36:1

    ADS  Google Scholar 

  • Petrov L (2021) The wide-field VLBA calibrator survey: WFCS. Astron J 161(1):14. https://doi.org/10.3847/1538-3881/abc4e1. arXiv:2008.09243 [astro-ph.IM]

    Article  ADS  Google Scholar 

  • Plumaris M, Dirkx D, Siemes C, Carraz O (2022) Cold atom interferometry for enhancing the radio science gravity experiment: a Phobos case study. Remote Sens 14(13):3030

    Article  ADS  Google Scholar 

  • Pogrebenko SV, Gurvits LI, Campbell RM, Avruch IM, Lebreton J-P, van’t Klooster CGM (2004) VLBI tracking of the Huygens probe in the atmosphere of Titan. In: Wilson A (ed) Planetary probe atmospheric entry and descent trajectory analysis and science. ESA special publication, vol 544, pp 197–204

    Google Scholar 

  • Pradel N, Charlot P, Lestrade J-F (2006) Astrometric accuracy of phase-referenced observations with the VLBA and EVN. Astron Astrophys 452(3):1099–1106. https://doi.org/10.1051/0004-6361:20053021. arXiv:astro-ph/0603015 [astro-ph]

    Article  ADS  Google Scholar 

  • Preston RA, Hildebrand CE, Purcell GH, Ellis J, Stelzried CT, Finley SG, Sagdeev RZ, Linkin VM, Kerzhanovich VV, Altunin VI, Kogan LR, Kostenko VI, Matveenko LI, Pogrebenko SV, Strukov IA, Akim EL, Alexandrov YN, Armand NA, Bakitko RN, Vyshlov AS, Bogomolov AF, Gorchankov YN, Selivanov AS, Ivanov NM, Tichonov VF, Blamont JE, Boloh L, Laurans G, Boischot A, Biraud F, Ortega-Molina A, Rosolen C, Petit G (1986) Determination of Venus winds by ground-based radio tracking of the Vega balloons. Science 231(4744):1414–1416. https://doi.org/10.1126/science.231.4744.1414

    Article  ADS  Google Scholar 

  • Reid MJ, Honma M (2014) Microarcsecond radio astrometry. Annu Rev Astron Astrophys 52:339–372. https://doi.org/10.1146/annurev-astro-081913-040006. arXiv:1312.2871 [astro-ph.IM]

    Article  ADS  Google Scholar 

  • Rioja MJ, Dodson R (2020) Precise radio astrometry and new developments for the next-generation of instruments. Astron Astrophys Rev 28(1):6. https://doi.org/10.1007/s00159-020-00126-z. arXiv:2010.02156 [astro-ph.IM]

    Article  ADS  Google Scholar 

  • Robitaille TP, Tollerud EJ, Greenfield P et al. (2013) Astropy: a community Python package for astronomy. Astron Astrophys 558:A33. https://doi.org/10.1051/0004-6361/201322068

    Article  Google Scholar 

  • Ros E, Marcaide JM, Guirado JC, Ratner MI, Shapiro II, Krichbaum TP, Witzel A, Preston RA (1999) High precision difference astrometry applied to the triplet of S5 radio sources B1803+784/Q1928+738/B2007+777. Astron Astrophys 348:381–393. https://doi.org/10.48550/arXiv.astro-ph/9905265. arXiv:astro-ph/9905265 [astro-ph]

    Article  ADS  Google Scholar 

  • Rotman D (2020) We’re not prepared for the end of Moore’s Law. MIT Technology Review. https://www.technologyreview.com/2020/02/24/905789/were-not-prepared-for-the-end-of-moores-law/

  • Sagdeev RZ, Kerzhanovich VV, Kogan LR, Kostenko VI, Linkin VM, Matveenko LI, Nazirov RR, Pogrebenko SV, Strukov IA, Preston R, Purcell JGH, Hildebrand C, Blamont J, Boloh L, Laurans G, Spencer RE, Golt J, Grishmanovskii VA, Kozlov AN, Molotov EP, Yatskiv YS, Martirosyan RM, Moiseev IG, Rogers AEE, Biraud F, Boichaut A, Kaufmann P, Mezger P, Schwarz R, Ronang BO, Nicolson G (1990) Measurements of the dynamics of air mass motion in the Venus atmosphere with balloon probes - Vega project. Sov Astron Lett 16:357

    ADS  Google Scholar 

  • Selvan KT, Janaswamy R (2017) Fraunhofer and Fresnel distances: unified derivation for aperture antennas. IEEE Antennas Propag Mag 59(4):12–15. https://doi.org/10.1109/MAP.2017.2706648

    Article  ADS  Google Scholar 

  • Shu F, Petrov L, Jiang W, Xia B, Jiang T, Cui Y, Takefuji K, McCallum J, Lovell J, Yi S-o, Hao L, Yang W, Zhang H, Chen Z, Li J (2017) VLBI ecliptic plane survey: VEPS-1. Astron Astrophys Suppl Ser 230(2):13. https://doi.org/10.3847/1538-4365/aa71a3. arXiv:1701.07287 [astro-ph.IM]

    Article  Google Scholar 

  • Soffel M, Klioner SA, Petit G, Wolf P, Kopeikin S, Bretagnon P, Brumberg V, Capitaine N, Damour T, Fukushima T et al. (2003) The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron J 126(6):2687

    Article  ADS  Google Scholar 

  • Takeuchi H, Horiuchi S, Phillips C, Edwards P, McCallum J, Ellingsen S, Dickey J, Ichikawa R, Takefuji K, Yamaguchi T, Kurihara S, Ichikawa B, Yoshikawa M, Tomiki A, Sawada H, Jinsong P (2011) VLBI tracking of the solar sail mission IKAROS. In: 2011 XXXth URSI general assembly and scientific symposium, pp 1–4. https://doi.org/10.1109/URSIGASS.2011.6051213

    Chapter  Google Scholar 

  • The Consultative Committee for Space Data Systems (2019) Radio Frequency and Modulation Systems–Part 1: Earth stations and spacecraft. Recommended Standard CCSDS 401.0-B-29. CCSDS/NASA, Washington DC. https://public.ccsds.org/Pubs/401x0b29s.pdf

  • Thompson AR, Moran JM, Swenson GW Jr (2017) Interferometry and synthesis in radio astronomy, 3rd edn. Springer, Cham. https://doi.org/10.1007/978-3-319-44431-4

    Book  Google Scholar 

  • Tosi F, Roatsch T, Galli A, Hauber E, Lucchetti A, Molyneux P, Stephan K, Achilleos N, Bovolo F, Carter J, Cavalié T, Cimò G, D’Aversa E, Gwinner K, Hartogh P, Huybrighs H, Langevin Y, Lellouch E, Migliorini A, Palumbo P, Piccioni G, Plaut JJ, Postberg F, Poulet F, Retherford K, Rezac L, Roth L, Solomonidou A, Tobie G, Tortora P, Tubiana C, Wagner R, Wirström E, Wurz P, Zambon F, Zannoni M, Barabash S, Bruzzone L, Dougherty M, Gladstone R, Gurvits LI, Hussmann H, Iess L, Wahlund J-E, Witasse O, Vallat C, Lorente R (2024) Characterization of the surfaces and near-surface atmospheres of Ganymede, Europa and Callisto by JUICE. Space Sci Rev 220

  • Tyler G, Marouf E, Wood G (1981) Radio occultation of Jupiter’s ring: bounds on optical depth and particle size and a comparison with infrared and optical results. J Geophys Res Space Phys 86(A10):8699–8703

    Article  ADS  Google Scholar 

  • Van Hoolst T, Tobie G, Vallat C, Altobelli N, Bruzzone L, Cao H, Dirkx D, Genova A, Hussmann H, Iess L, Kimura J, Khurana K, Lucchetti A, Mitri G, Moore W, Saur J, Stark A, Vorburger A, Wieczorek M, Aboudan A, Bergman J, Bovolo F, Breuer D, Cappuccio P, Carrer L, Cecconi B, Choblet G, De Marchi F, Fayolle M, Fienga A, Futaana Y, Hauber E, Kofman W, Kumamoto A, Lainey V, Molyneux P, Mousis O, Plaut J, Puccio W, Retherford K, Roth L, Seignovert B, Steinbrügge G, Thakur S, Tortora P, Tosi F, Zannoni M, Barabash S, Dougherty M, Gladstone R, Gurvits LI, Hartogh P, Palumbo P, Poulet F, Wahlund J-E, Grasset O, Witasse O (2024) Geophysical characterization of the interiors of Ganymede, Callisto and Europa by ESA’s Jupiter ICy moons Explorer. Space Sci Rev 220

  • Venturi T, Paragi Z, Lindqvist M, Bartkiewicz A, Beswick R, Bogdanović T, Brisken W, Charlot P, Colomer F, Conway J, Frey S, Guirado JC, Gurvits L, van Langevelde H, Lobanov A, McKean J, Morganti R, Muxlow T, Pérez-Torres M, Rygl K, Schulz R, Szomoru A, de Vicente P, An T, Anglada G, Argo M, Azulay R, van Bemmel I, Bocanegra T, Boccardi B, Castangia P, Chibueze J, Cimò G, Climent J-B, Deane R, Deller A, Dodson R, Duev D, Etoka S, Fenech D, Gabányi K, Gabuzda D, Garrett M, Gawroński M, Ghirlanda G, Giroletti M, Goddi C, Gómez JL, Gray M, Greaves J, Hessels J, van der Horst A, Hunter T, Laing R, Vir Lal D, Lambert S, Loinard L, Marcote B, Merloni A, Miller-Jones J, Molera Calvés G, Moscadelli L, Olofsson H, Petrov L, Pizzo R, Possenti A, Quiroga-Nuñez LH, Reynolds C, Richards A, Rioja M, Sanna A, Savolainen T, Sbarrato T, Spingola C, Surcis G, Trigilio C, Varenius E, Vlemmings W, van Velzen S, van der Walt J (2020) VLBI20-30: a scientific roadmap for the next decade. The future of the European VLBI network. arXiv e-prints. https://doi.org/10.48550/arXiv.2007.02347. arXiv:2007.02347 [astro-ph.IM]

    Chapter  Google Scholar 

  • Villamil S, Dirkx D, Stark A, Hussmann H (2021) Improvement of orbit determination using laser altimeter crossovers: juice mission case study. Acta Astronaut 182:587–598

    Article  ADS  Google Scholar 

  • Witasse O et al. (2024) The Jupiter Icy Moons Explorer (JUICE) mission. Space Sci Rev 220

  • Witasse O, Lebreton J-P, Bird MK, Dutta-Roy R, Folkner WM, Preston RA, Asmar SW, Gurvits LI, Pogrebenko SV, Avruch IM, Campbell RM, Bignall HE, Garrett MA, van Langevelde HJ, Parsley SM, Reynolds C, Szomoru A, Reynolds JE, Phillips CJ, Sault RJ, Tzioumis AK, Ghigo F, Langston G, Brisken W, Romney JD, Mujunen A, Ritakari J, Tingay SJ, Dodson RG, van’t Klooster CGM, Blancquaert T, Coustenis A, Gendron E, Sicardy B, Hirtzig M, Luz D, Negrao A, Kostiuk T, Livengood TA, Hartung M, de Pater I, Ádámkovics M, Lorenz RD, Roe H, Schaller E, Brown M, Bouchez AH, Trujillo CA, Buratti BJ, Caillault L, Magin T, Bourdon A, Laux C (2006) Overview of the coordinated ground-based observations of Titan during the Huygens mission. J Geophys Res, Planets 111(E7):07. https://doi.org/10.1029/2005JE002640

    Article  Google Scholar 

  • Yu W, Romein JW, Dursi LJ, Lu R-S, Pope A, Callanan G, Pesce DW, Blackburn L, Merry B, Srinivasan R, Kim J, Weintroub J (2023) Prospects of GPU Tensor Core Correlation for the SMA and the ngEHT. Galaxies 11(1). https://doi.org/10.3390/galaxies11010013

  • Zhou H, Li HT, Dong GL (2015) Relative position determination between Chang’E-3 lander and rover using in-beam phase referencing. Sci China Inf Sci 58:1–10. https://doi.org/10.1007/s11432-015-5363-1

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the reviewers and editors for very useful comments, corrections and suggestions. The observing examples shown in this paper for PRIDE-style tracking of various spacecraft are based on observations conducted with the European VLBI Network (EVN), the AuScope facility, and the Long Baseline Array (LBA), and Very Long Baseline Array (VLBA). The EVN is a joint facility of independent European, African, Asian, and North American radio astronomy institutes. The AuScope involvement in the presented here observations was enabled by Geoscience Australia and the Australian Government via the National Collaborative Research Infrastructure Strategy (NCRIS). The LBA is operated as a National Facility, and managed by CSIRO and the University of Tasmania. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities. We are grateful to the ESA personnel for supporting PRIDE observations of the Mars Express and BepiColombo missions. We gratefully acknowledge the VLBI database of the Astrogeo Center maintained by Leonid Petrov (NASA GSFC) and his comments on the contents of the current paper. We thank Chris Phillips (CASS) for supporting PRIDE test observations at the Mopra radio telescope. J.F., S.F., and K.P. acknowledge the ESA PRODEX support (project PEA 4000136207). M.S.F acknowledges partial funding by ESA’s OSIP (Open Space Innovation Platform) program.

Author information

Authors and Affiliations

Authors

Contributions

Giuseppe Cimò, Dominic Dirkx, Vidhya Pallichadath, Alexander Akins, Nicolas Altobelli, Tatiana M. Bocanegra-Bahamon, Stéphanie M. Cazaux, Patrick Charlot, Dmitry A. Duev, Marie S. Fayolle, Judit Fogasy, Sándor Frey, Valery Lainey, Guifré Molera Calvés, Krisztina Perger, Sergey V. Pogrebenko, N. Masdiana Md Said, Claire Vallat, Bert L.A. Vermeersen, Pieter N.A.M. Visser, Kuo-Nung Wang, Konrad Willner contributed equally to this work.

Corresponding author

Correspondence to Leonid I. Gurvits.

Ethics declarations

Competing Interests

The authors declare no conflicting interests, individual or institutional, related to the current paper as a whole and/or any its component.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurvits, L.I., Cimò, G., Dirkx, D. et al. Planetary Radio Interferometry and Doppler Experiment (PRIDE) of the JUICE Mission. Space Sci Rev 219, 79 (2023). https://doi.org/10.1007/s11214-023-01026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-023-01026-1

Keywords

Navigation