Skip to main content
Log in

From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

This paper is an introduction to volume 56 of the Space Science Series of ISSI, “From disks to planets—the making of planets and their proto-atmospheres”, a key subject in our quest for the origins and evolutionary paths of planets, and for the causes of their diversity. Indeed, as exoplanet discoveries progressively accumulated and their characterization made spectacular progress, it became evident that the diversity of observed exoplanets can in no way be reduced to the two classes of planets that we are used to identify in the solar system, namely terrestrial planets and gas or ice giants: the exoplanet reality is just much broader. This fact is no doubt the result of the exceptional diversity of the evolutionary paths linking planetary systems as a whole as well as individual exoplanets and their proto-atmospheres to their parent circumstellar disks: this diversity and its causes are exactly what this paper explores. For each of the main phases of the formation and evolution of planetary systems and of individual planets, we summarize what we believe we understand and what are the important open questions needing further in-depth examination, and offer some suggestions on ways towards solutions.

We start with the formation mechanisms of circumstellar disks, with their gas and disk components in which chemical composition plays a very important role in planet formation. We summarize how dust accretion within the disk generates planet cores, while gas accretion on these cores can lead to the diversity of their fluid envelopes. The temporal evolution of the parent disk itself, and its final dissipation, put strong constraints on how and how far planetary formation can proceed. The radiation output of the central star also plays an important role in this whole story. This early phase of planet evolution, from disk formation to dissipation, is characterized by a co-evolution of the disk and its daughter planets. During this co-evolution, planets and their protoatmospheres not only grow, but they also migrate radially as a result of their interaction with the disk, thus moving progressively from their distance of formation to their final location. The formation of planetary fluid envelopes (proto-atmospheres and oceans), is an essential product of this planet formation scenario which strongly constrains their possible evolution towards habitability. We discuss the effects of the initial conditions in the disk, of the location, size and mass of the planetary core, of the disk lifetime and of the radiation output and activity of the central star, on the formation of these envelopes and on their relative extensions with respect to the planet core. Overall, a fraction of the planets retain the primary proto-atmosphere they initially accreted from the gas disk. For those which lose it in this early evolution, outgassing of volatiles from the planetary core and mantle, together with some contributions of volatiles from colliding bodies, give them a chance to form a “secondary” atmosphere, like that of our own Earth.

When the disk finally dissipates, usually before 10 Million years of age, it leaves us with the combination of a planetary system and a debris disk, each with a specific radial distribution with respect to their parent star(s). Whereas the dynamics of protoplanetary disks is dominated by gas-solid dynamical coupling, debris disks are dominated by gravitational dynamics acting on diverse families of planetesimals. Solid-body collisions between them and giant impacts on young planetary surfaces generate a new population of gas and dust in those disks. Synergies between solar system and exoplanet studies are particularly fruitful and need to be stimulated even more, because they give access to different and complementary components of debris disks: whereas the different families of planetesimals can be extensively studied in the solar system, they remain unobserved in exoplanet systems. But, in those systems, long-wavelength telescopic observations of dust provide a wealth of indirect information about the unobserved population of planetesimals. Promising progress is being currently made to observe the gas component as well, using millimetre and sub-millimetre giant radio interferometers.

Within planetary systems themselves, individual planets are the assembly of a solid body and a fluid envelope, including their planetary atmosphere when there is one. Their characteristics range from terrestrial planets through sub-Neptunes and Neptunes and to gas giants, each type covering most of the orbital distances probed by present-day techniques. With the continuous progress in detection and characterization techniques and the advent of major providers of new data like the Kepler mission, the architecture of these planetary systems can be studied more and more accurately in a statistically meaningful sense and compared to the one of our own solar system, which does not appear to be an exceptional case. Finally, our understanding of exoplanets atmospheres has made spectacular advances recently using the occultation spectroscopy techniques implemented on the currently operating space and ground-based observing facilities.

The powerful new observing facilities planned for the near and more distant future will make it possible to address many of the most challenging current questions of the science of exoplanets and their systems. There is little doubt that, using this new generation of facilities, we will be able to reconstruct more and more accurately the complex evolutionary paths which link stellar genesis to the possible emergence of habitable worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • S.M. Andrews, K.A. Rosenfeld, A.L. Kraus, D.J. Wilner, The mass dependence between protoplanetary disks and their stellar hosts. Astrophys. J. 771, 129–200 (2013)

    Article  ADS  Google Scholar 

  • R. Alexander, P.J. Armitage, Giant planet migration, disk evolution, and the origin of transitional disks. Astrophys. J. 704, 989–1001 (2009)

    Article  ADS  Google Scholar 

  • R. Alexander, I. Pascucci, Deserts and pile-ups in the distribution of exoplanets due to photoevaporative disc clearing. Mon. Not. R. Astron. Soc. 422, 82–86 (2012)

    Article  ADS  Google Scholar 

  • C.M.O’D. Alexander, R. Bowden, M.L. Fogel, K.T. Howard, C.D.K. Herd, N.R. Nittler, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012)

    Article  ADS  Google Scholar 

  • J.M. Alcalá, E. Covino, G. Tottres, M.F. Sterzik, M.J. Pfeiffer, R. Neuhäuser, High-resolution spectroscopy of ROSAT low-mass pre-main sequence stars in Orion. Astron. Astrophys. 353, 186–201 (2000)

    ADS  Google Scholar 

  • Y. Alibert, C. Mordasini, W. Benz, Migration and giant planet formation. Astron. Astrophys. 417, L25–L28 (2004)

    Article  ADS  Google Scholar 

  • Y. Alibert, C. Mordasini, W. Benz, C. Winisdoerffer, Models of giant planet formation with migration and disc evolution. Astron. Astrophys. 434, 343–353 (2005a)

    Article  ADS  Google Scholar 

  • Y. Alibert, O. Mousis, C. Mordasini, W. Benz, New Jupiter and Saturn models meet observations. Astrophys. J. 626, L57–L60 (2005b)

    Article  ADS  Google Scholar 

  • Y. Alibert, I. Baraffe, W. Benz, G. Chabrier, C. Mordasini, C. Lovis, M. Mayor, F. Pepe, F. Bouchy, D. Queloz, S. Udry, Formation and structure of the three Neptune-mass planets system around HD 69830. Astron. Astrophys. 455, L25–L28 (2006)

    Article  ADS  Google Scholar 

  • Y. Alibert, C. Broeg, W. Benz, G. Wuchterl, O. Grasset, C. Sotin, C. Eiroa, Th. Henning, T. Herbst, L. Kaltenegger, A. Léger, R. Liseau, H. Lammer, C. Beichman, W. Danchi, M. Fridlund, J. Lunine, F. Paresce, A. Penny, A. Quirrenbach, H. Röttgering, F. Selsis, J. Schneider, D. Stam, G. Tinetti, G.J. White, Origin and formation of planetary systems. Astrobiology 10, 19–32 (2010)

    Article  ADS  Google Scholar 

  • S.M. Andrews, D.J. Wilner, A.M. Hughes, C. Qi, C.P. Dullemond, Protoplanetary disk structures in Ophiuchus. Astrophys. J. 700, 1502–1523 (2009)

    Article  ADS  Google Scholar 

  • G. Aresu, I. Kamp, R. Meijerink, P. Woitke, W.F. Thi, M. Spaans, X-ray impact on the protoplanetary disks around T Tauri stars. Astron. Astrophys. 526, A163 (2011). 6 pp.

    Article  ADS  Google Scholar 

  • S.A. Balbus, J.F. Hawley, A powerful local shear instability in weakly magnetized disks. I—Linear analysis. II—Nonlinear evolution. Astrophys. J. 376, 214–233 (1991)

    Article  ADS  Google Scholar 

  • S. Ballard, J.A. Johnson, The Kepler dichotomy among the M dwarfs: Half of systems contain five or more coplanar planets. Astrophys. J. 816, 66 (2016)

    Article  ADS  Google Scholar 

  • T.S. Barman, Q.M. Konopacky, B. Macintosh, C. Marois, Simultaneous detection of water, methane, and carbon monoxide in the atmosphere of exoplanet HR8799b. Astrophys. J. 804, 61 (2015). 10 pp.

    Article  ADS  Google Scholar 

  • T. Barclay, J.F. Rowe, J.J. Lissauer (the Kepler Science Team), A sub-Mercury-sized exoplanet. Nature 496, 252 (2013)

    Article  ADS  Google Scholar 

  • C. Baruteau, J.C.B. Papaloizou, Disk-planets interactions and the diversity of period ratios in Kepler’s multi-planetary systems. Astrophys. J. 778, A7 (2013). 15 pp.

    Article  ADS  Google Scholar 

  • C. Baruteau, A. Crida, S.-J. Paardekooper, F. Masset, J. Guilet, B. Bitsch, R. Nelson, W. Kley, J. Papaloizou, Planet-disk interactions and early evolution of planetary systems, in Protostars and Planets VI, ed. by H. Beuther, R.S. Kessen, C.P. Dullemond, T. Henning (University of Arizona Press, Tucson, 2014), pp. 667–689

    Google Scholar 

  • C. Baruteau, X. Bai, C. Mordasini, P. Molliere, Formation, orbital and internal evolutions of young planetary systems. Space Sci. Rev. 205, 77–124 (2016). ibid. (2017, this volume)

    Article  ADS  Google Scholar 

  • J.L. Bean, E. Miller-Ricci Kempton, D. Homeier, A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b. Nature 468, 669–672 (2010)

    Article  ADS  Google Scholar 

  • R.H. Becker, R.N. Clayton, E.M. Galimov, H. Lammer, B. Marty, R.O. Pepin, R.O. Wieler, Isotopic signatures of volatiles in terrestrial planets. Space Sci. Rev. 106, 377–410 (2003)

    Article  ADS  Google Scholar 

  • T. Birnstiel, M. Fang, A. Johansen, Dust evolution and the formation of planetesimals. Space Sci. Rev. 205, 41–75 (2016). ibid. (2017, this volume)

    Article  ADS  Google Scholar 

  • B. Bitsch, M. Lambrechts, A. Johansen, The growth of planets by pebble accretion in evolving protoplanetary discs. Astron. Astrophys. 582, A112 (2015a). 24 pp.

    Article  ADS  Google Scholar 

  • B. Bitsch, A. Johansen, M. Lambrechts, A. Morbidelli, The structure of protoplanetary discs around evolving young stars. Astron. Astrophys. 575, A28 (2015b). 17 pp.

    Article  ADS  Google Scholar 

  • V. Bourrier, A. Lecavelier des Etangs, 3D model of hydrogen atmospheric escape from HD 209458b and HD 189733b: Radiative blow-out and stellar wind interactions. Astron. Astrophys. 557, A124 (2013). 18 pp.

    Article  ADS  Google Scholar 

  • A.P. Boss, Rapid formation of outer giant planets by disk instability. Astrophys. J. 599, 577–581 (2003)

    Article  ADS  Google Scholar 

  • C. Broeg, A. Fortier, D. Ehrenreich (CHEOPS the CHEOPS Team), A transit photometry mission for ESA’s small mission programme. EPJ Web Conf. 47, 03005 (2013)

    Article  Google Scholar 

  • M. Brogi, I.A.G. Snellen, R.J. de Kok, S. Albrecht, J.L. Birkby, E.J.W. de Mooij, Detection of molecular absorption in the dayside of exoplanet 51 Pegasi b? Astrophys. J. 767, 27 (2013). 10 pp.

    Article  ADS  Google Scholar 

  • L.A. Buchhave, M. Bizzarro, D.W. Latham, D. Sasselov, W.D. Cochran, M. Endl, H. Isaacson, D. Juncher, G.W. Marcy, Three regimes of extrasolar planet radius inferred from host star metallicities. Nature 509, 593–595 (2014)

    Article  ADS  Google Scholar 

  • P. Caselli, C. Ceccarelli, Our astrochemical heritage. Astron. Astrophys. Rev. 20, A56 (2012). https://doi.org/10.1007/s00159-012-0056-x

    Article  ADS  Google Scholar 

  • P. Cubillos, E.V. Erkaev, I. Juvan, L. Fossati, C.P. Johnstone, H. Lammer, M. Lendl, P. Odert, K.G. Kislyakova, An overabundance of low-density Neptune-like planets. Mon. Not. R. Astron. Soc. 466, 1868–1879 (2017)

    Article  ADS  Google Scholar 

  • K.-M. Dittkrist, C. Mordasini, H. Klahr, Y. Alibert, T. Henning, Impacts of planet migration models on planetary populations. Effects of saturation, cooling and stellar irradiation. Astron. Astrophys. 567, A121 (2014). 18 pp.

    Article  Google Scholar 

  • D. Deming, A. Wilkins, P.A. McCullough, J. Fortney, E. Agol, I. Dobbs-Dixon, N. Madhusudhan, N. Crouzet, J.-M. Desert, R.L. Gilliland, K. Haynes, H.A. Knutson, M. Line, Z. Magic, A.M. Mandell, S. Ranjan, D. Charbonneau, M. Clampin, S. Seager, A.P. Showman, Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the wide field camera-3 on the Hubble Space Telescope. Astrophys. J. 774, 95 (2013). 17 pp.

    Article  ADS  Google Scholar 

  • D. Ehrenreich, A. Lecavelier Des Etangs, G. Hébrard, J.-M. Désert, A. Vidal-Madjar, J.C. McConnell, C.D. Parkinson, G.E. Ballester, R. Ferlet, New observations of the extended hydrogen exosphere of the extrasolar planet HD 209458b. Astron. Astrophys. 483, 933–937 (2008)

    Article  ADS  Google Scholar 

  • D. Ehrenreich, X. Bonfils, C. Lovis, X. Delfosse, T. Forveille, M. Mayor, V. Neves, N.C. Santos, S. Udry, D. Ségransan, Near-infrared transmission spectrum of the warm-Uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope. Astron. Astrophys. 570, A89 (2014). 24 pp.

    Article  ADS  Google Scholar 

  • D. Ehrenreich, V. Bourrier, P.J. Wheatley, A. Lecavelier Des Etangs, G. Hébrard, S. Udry, X. Bonfils, X. Delfosse, J.-M. Désert, D.K. Sing, A. Vidal-Madjar, A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522, 459–461 (2015)

    Article  ADS  Google Scholar 

  • L.T. Elkins-Tanton, Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008)

    Article  ADS  Google Scholar 

  • L.T. Elkins-Tanton, Formation of water ocean on rocky planets. Astrophys. Space Sci. 332, 359–364 (2011)

    Article  ADS  Google Scholar 

  • T. Encrenaz, Water in the solar system. Annu. Rev. Astron. Astrophys. 46, 57–87 (2008)

    Article  ADS  Google Scholar 

  • M. Fang, J.S. Kim, R. van Boekel, A. Sicilia-Aguilar, T. Henning, K. Flaherty, Young stellar objects in Lynds 1641: disks, accretion, and star formation history. Astrophys. J. Suppl. 207, 5 (2013). 39 pp.

    Article  ADS  Google Scholar 

  • D. Fedele, M.E. van den Ancker, T. Henning, R. Jayawardhana, J.M. Oliveira, Timescale of mass accretion in pre-main-sequence stars. Astron. Astrophys. 510, A72 (2010). 7 pp.

    Article  Google Scholar 

  • D.A. Fischer, J. Valenti, The planet-metallicity correlation. Astrophys. J. 622, 1102–1117 (2005)

    Article  ADS  Google Scholar 

  • M. Fischer-Gödde, T. Kleine, Ruthenium isotopic evidence for an inner solar system origin of the late veneer. Nature 541, 525–527 (2017)

    Article  ADS  Google Scholar 

  • J.J. Fortney, K. Lodders, M.S. Marley, R.S. Freedman, A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419–1435 (2008)

    Article  ADS  Google Scholar 

  • L. Fossati, S. Bagnulo, A. Elmasli, C.A. Haswell, S. Holmes, O. Kochukhov, E.L. Shkolnik, D.V. Shulyak, D. Bohlender, B. Albayrak, C. Froning, L. Hebb, A detailed spectropolarimetric analysis of the planet-hosting star WASP-12. Astrophys. J. 720, 872–886 (2010)

    Article  ADS  Google Scholar 

  • L. Fossati, N.V. Erkaev, H. Lammer, P.E. Cubillos, P. Odert, I. Juvan, K.G. Kislyakova, M. Lendl, D. Kubyshkina, S.J. Bauer, Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets. Astron. Astrophys. 598, A90 (2017). 9 pp.

    Article  ADS  Google Scholar 

  • F. Fressin, G. Torres, D. Charbonneau, S.T. Bryson, J. Christiansen, C.D. Dressing, J.M. Jenkins, L.M. Walkowicz, N.M. Batalha, The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013). 20 pp.

    Article  ADS  Google Scholar 

  • M. Fridlund, A. Hatzes, R. Liseau, The way forward. Space Sci. Rev. 205, 349–372 (2016). ibid. (2017, this volume)

    Article  ADS  Google Scholar 

  • C. Gammie, Layered accretion in T Tauri disks. Astrophys. J. 457, 355–362 (1996)

    Article  ADS  Google Scholar 

  • U. Gorti, D. Hollenbach, C.P. Dullemond, The impact of dust evolution and photoevaporation on disk dispersal. Astrophys. J. 804, A29 (2015). 21 pp.

    Article  ADS  Google Scholar 

  • U. Gorti, R. Liseau, Z. Sandor, C. Clarke, Disk dispersal: theoretical understanding and observational constraints. Space Sci. Rev. 205, 125–152 (2016). ibid. (2017, this volume)

    Article  ADS  Google Scholar 

  • K.E. Haisch Jr., E.A. Lada, C.J. Lada, Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153–L156 (2001)

    Article  ADS  Google Scholar 

  • K. Hamano, Y. Abe, H. Genda, Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013)

    Article  ADS  Google Scholar 

  • B.M.S. Hansen, N. Murray, Testing in-situ assembly with the Kepler planet candidate sample. Astrophys. J. 775, 53 (2013). 17 pp.

    Article  ADS  Google Scholar 

  • L. Hartmann, Accretion Processes in Star Formation (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  • A.R. Howe, A.S. Burrows, Theoretical transit spectra for GJ 1214b and other “super-Earths”. Astrophys. J. 756, 176 (2012). 14 pp.

    Article  ADS  Google Scholar 

  • C.A. Haswell, L. Fossati, T. Ayres, K. France, C.S. Froning, S. Holmes, U.C. Kolb, R. Busuttil, R.A. Street, L. Hebb, A. Collier Cameron, B. Enoch, V. Burwitz, J. Rodriguez, R.G. West, D. Pollacco, P.J. Wheatley, A. Carter, Near-ultraviolet absorption, chromospheric activity, and star-planet interactions in the WASP-12 system. Astrophys. J. 760, A9 (2012). 23 pp.

    Article  Google Scholar 

  • A. Hatzes, The architecture of exoplanet systems. Space Sci. Rev. 205, 267–283 (2016). ibid. (2017, this volume)

    Article  ADS  Google Scholar 

  • C. Hayashi, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981)

    Article  ADS  Google Scholar 

  • T. Henning, D. Semenov, Chemistry in protoplanetary disks. Chem. Rev. 113, 9016–9042 (2013)

    Article  Google Scholar 

  • T. Henning, G. Meeus, in Physical Processes in Circumstellar Disks Around Young Stars, ed. by P.J.V. Grady (Chicago University Press, Chicago, 2011), p. 114

    Google Scholar 

  • H.D. Holland, The Chemical Evolution of the Atmosphere and Oceans (Princeton University Press, Princeton, 1984). 598 pp.

    Google Scholar 

  • I. Hubeny, A. Burrows, D. Sudarsky, A possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. 594, 1011–1018 (2003)

    Article  ADS  Google Scholar 

  • S. Ida, D.N.C. Lin, Toward a deterministic model of planetary formation. II. The formation and retention of gas giant planets around stars with a range of metallicities. Astrophys. J. 616, 567–572 (2004)

    Article  ADS  Google Scholar 

  • M. Ikoma, K. Nakazawa, H. Emori, Formation of giant planets: dependences on core accretion rate and grain opacity. Astrophys. J. 537, 1013–1025 (2000)

    Article  ADS  Google Scholar 

  • M. Ikoma, Y. Hori, In-situ accretion of hydrogen-rich atmospheres on short-period super-Earths: implications for the Kepler-11 planets. Astrophys. J. 753, A66 (2012). 6 pp.

    Article  ADS  Google Scholar 

  • M. Ilgner, Th. Henning, A.J. Markwick, T.J. Millar, Transport processes and chemical evolution in steady accretion disk flows. Astron. Astrophys. 415, 643–659 (2004)

    Article  ADS  Google Scholar 

  • E. Jarosewich, Chemical analyses of meteorites: a compilation of stony and iron meteorite analyses. Meteoritics 25, 323–337 (1990)

    Article  ADS  Google Scholar 

  • C.P. Johnstone, M. Güdel, A. Stökl, H. Lammer, L. Tu, K.G. Kislyakova, T. Lüftinger, P. Odert, N.V. Erkaev, E.A. Dorfi, The evolution of stellar rotation and the hydrogen atmospheres of habitable-zone terrestrial planets. Astrophys. J. Lett. 815, A12 (2015). 6 pp.

    Article  ADS  Google Scholar 

  • I. Kant, Universal Natural Theory and Theory of Heaven (1755)

    Google Scholar 

  • J.F. Kasting, D.H. Eggler, S.P. Raeburn, Mantle redox evolution and the case for a reduced Archean atmosphere. J. Geol. 101, 245–257 (1993)

    Article  ADS  Google Scholar 

  • K.G. Kislyakova, M. Holmström, H. Lammer, P. Odert Petra, M.L. Khodachenko, Magnetic moment and plasma environment of HD 209458b as determined from \(\mbox{Ly}\alpha\) observations. Science 346, 981–984 (2014)

    Article  ADS  Google Scholar 

  • W. Kley, R.P. Nelson, Planet-disk interaction and orbital evolution. Annu. Rev. Astron. Astrophys. 50, 211–249 (2012)

    Article  ADS  Google Scholar 

  • H.A. Knutson, D. Charbonneau, L.E. Allen, A. Burrows, S.T. Megeath, The 3.6–8.0 μm broadband emission spectrum of HD 209458b: evidence for an atmospheric temperature inversion. Astrophys. J. 673, 526–531 (2008)

    Article  ADS  Google Scholar 

  • H.A. Knutson, A.W. Howard, H. Isaacson, A correlation between stellar activity and hot Jupiter emission spectra. Astrophys. J. 720, 1569–1576 (2010)

    Article  ADS  Google Scholar 

  • R.J. de Kok, M. Brogi, I.A.G. Snellen, J. Birkby, S. Albrecht, E.J.W. de Mooij, Detection of carbon monoxide in the high-resolution day-side spectrum of HD 189733b. Astron. Astrophys. 554, A82 (2013). 9 pp.

    Article  Google Scholar 

  • J.R. Kulow, K. France, J. Linsky, L.R.O. Parker, \(\mbox{Ly}\alpha\) transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436b. Astrophys. J. 786, A132 (2014). 9 pp.

    Article  ADS  Google Scholar 

  • M. Lambrechts, A. Johansen, Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012). 13 pp.

    Article  ADS  Google Scholar 

  • M. Lambrechts, A. Johansen, A. Morbidelli, Separating gas-giant and ice-giant planets by halting pebble accretion. Astron. Astrophys. 572, A35 (2014). 12 pp.

    Article  ADS  Google Scholar 

  • F. Lahuis, E.F. van Dishoeck, A.C.A. Boogert, K.M. Pontoppidan, G.A. Blake, C.P. Dullemond, N.J.I.I. Evans, M.R. Hogerheijde, J.K. Jørgensen, J.E. Kessler-Silacci, C. Knez, Hot organic molecules toward a young low-mass star: a look at inner disk chemistry. Astrophys. J. 636, L145–L148 (2006)

    Article  ADS  Google Scholar 

  • H. Lammer, K.G. Kislyakova, P. Odert, M. Leitzinger, R. Schwarz, E. Pilat-Lohinger, Yu.N. Kulikov, M.L. Khodachenko, M. Güdel, A. Hanslmeier, Pathways to Earth-like atmospheres extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres. Orig. Life Evol. Biosph. 41, 503–522 (2011)

    Article  ADS  Google Scholar 

  • H. Lammer, A. Stökl, N.V. Erkaev, E. Dorfi, P. Odert, M. Güdel, Yu.N. Kulikov, K.G. Kislyakova, M. Leitzinger, Origin and loss of nebula-captured hydrogen envelopes from ‘sub’- to ‘super-Earths’ in the habitable zone of Sun-like stars. Mon. Not. R. Astron. Soc. 439, 3225–3238 (2014)

    Article  ADS  Google Scholar 

  • H. Lammer, N.V. Erkaev, L. Fossati, I. Juvan, P. Odert, P.E. Cubillos, E. Guenther, K.G. Kislyakova, C.P. Johnstone, T. Lüftinger, M. Güdel, Identifying the “true” radius of the sub-Neptunes CoRoT-24b by mass loss modelling. Mon. Not. R. Astron. Soc. 461, L62–L66 (2016)

    Article  ADS  Google Scholar 

  • T. Lebrun, H. Massol, E. Chassefiére, A. Davaille, E. Marcq, P. Sarda, F. Leblanc, G. Brandeis, Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res., Planets 118, 1155–1176 (2013)

    Article  ADS  Google Scholar 

  • P.-S. Laplace. Exposition du Système du Monde (1796)

    MATH  Google Scholar 

  • G. Lee, I. Doobs-Dixon, Ch. Helling, K. Bognar, P. Woitke, Dynamic mineral clouds on HD 189733b—I. 3D RHD with kinetic, non-equilibrium cloud formation. Astron. Astrophys. 594, A48 (2016)

    Article  ADS  Google Scholar 

  • D.N.C. Lin, J. Papaloizou, On the tidal interaction between protoplanets and the protoplanetary disk. III—Orbital migration of protoplanets. Astrophys. J. 309, 846–857 (1986)

    Article  ADS  Google Scholar 

  • D.N.C. Lin, P. Bodenheimer, D.C. Richardson, Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996)

    Article  ADS  Google Scholar 

  • J.J. Lissauer, D. Fabrycky, C. Daniel (the Kepler Science Team), A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470, 53–58 (2011)

    Article  ADS  Google Scholar 

  • L.-G. Liu, The inception of the oceans and \(\mbox{CO}_{2}\)-atmosphere in the early history of the Earth. Earth Planet. Sci. Lett. 227, 179–184 (2004)

    Article  ADS  Google Scholar 

  • R. Luger, R. Barnes, E. Lopez, J. Fortney, B. Jackson, V. Meadows, Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. Astrobiology 15, 57–88 (2015)

    Article  ADS  Google Scholar 

  • N. Madhusudhan, S. Seager, High metallicity and non-equilibrium chemistry in the dayside atmosphere of hot-Neptune GJ 436b. Astrophys. J. 729, A41 (2011)

    Article  ADS  Google Scholar 

  • N. Madhusudhan, M.A. Amin, G.M. Kennedy, Toward chemical constraints on hot Jupiter migration. Astrophys. J. Lett. 794, L12 (2014). 5 pp.

    Article  ADS  Google Scholar 

  • N. Madhusudhan, M. Agundez Chico, J.I. Moses, Y. Hu, Exoplanetary atmospheres—chemistry, formation conditions, and habitability. Space Sci. Rev. 205, 285–348 (2016). ibid. (2017, this volume)

    Article  ADS  Google Scholar 

  • G.W. Marcy, H. Isaacson, A.W. Howard (the Kepler Science Team), Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. Astrophys. J. Suppl. 210, 20 (2014). 70 pp.

    Article  ADS  Google Scholar 

  • B. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012)

    Article  ADS  Google Scholar 

  • H. Massol, K. Hamano, F. Tian, M. Ikoma, Y. Abe, E. Chassefière, A. Davaille, H. Genda, M. Güdel, Y. Hori, F. Leblanc, E. Marcq, P. Sarda, V.I. Shematovich, A. Stökl, H. Lammer, Formation and evolution of protoatmospheres. Space Sci. Rev. 205, 153–211 (2016). ibid. (2017, this volume)

    Article  ADS  Google Scholar 

  • B.C. Matthews, A.V. Krivov, M.C. Wyatt, G. Bryden, C. Eiroa, Observations, modeling, and theory of debris disks, in Protostars and Planets, vol. VI (2014), pp. 521–544. https://doi.org/10.2458/azu_uapress_9780816531240-ch023

    Google Scholar 

  • B.C. Matthews, J.J. Kavelaars, Insights into planet formation from debris disks. I. The solar system as an archetype for planetesimal evolution. Space Sci. Rev. 205, 213–230 (2016). ibid. (2017, this volume)

    Article  ADS  Google Scholar 

  • M. Mayor, D. Queloz, A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995)

    Article  ADS  Google Scholar 

  • H. Mizuno, Formation of the giant planets. Prog. Theor. Phys. 64, 544–557 (1980)

    Article  ADS  Google Scholar 

  • S. Mohanty, J. Greaves, D. Mortlock, I. Pascucci, A. Scholz, M. Thompson, D. Apai, G. Lodato, D. Looper, Protoplanetary disk masses from stars to brown dwarfs. Astrophys. J. 773, 168 (2013). 33 pp.

    Article  ADS  Google Scholar 

  • A. Morbidelli, J. Chambers, J.I. Lunine, J.M. Petit, F. Robert, G.B. Valsecchi, K.E. Cyr, Source regions and time scales for the delivery of water to Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000)

    Article  ADS  Google Scholar 

  • A. Morbidelli, D. Nesvorný, Dynamics of pebbles in the vicinity of a growing planetary embryo: hydro-dynamical simulations. Astron. Astrophys. 546, A18 (2012). 7 pp.

    Article  ADS  Google Scholar 

  • C. Mordasini, Y. Alibert, W. Benz, Extrasolar planet population synthesis I: method, formation tracks and mass-distance distribution. Astron. Astrophys. 501, 1139–1160 (2009a)

    Article  ADS  Google Scholar 

  • C. Mordasini, Y. Alibert, W. Benz, D. Naef, Extrasolar planet population synthesis II: statistical comparison with observation. Astron. Astrophys. 501, 1161–1184 (2009b)

    Article  ADS  Google Scholar 

  • C. Mordasini, Y. Alibert, C. Georgy, K.-M. Dittkrist, H. Klahr, T. Henning, Characterization of exoplanets from their formation. II. The planetary mass-radius relationship. Astron. Astrophys. 547, A112 (2012). 36 pp.

    Article  ADS  Google Scholar 

  • G.D. Mulders, I. Pascucci, A. Dániel, An increase in the mass of planetary systems around lower-mass stars. Astrophys. J. 814, 130 (2015a). 10 pp.

    Article  ADS  Google Scholar 

  • G.D. Mulders, I. Pascucci, A. Dániel, A stellar-mass-dependent drop in planet occurrence rates. Astrophys. J. 798, 112 (2015b). 18 pp.

    Article  ADS  Google Scholar 

  • M.J. Mumma, S.B. Charnley, The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011)

    Article  ADS  Google Scholar 

  • J.R. Najita, M. Ádámkovics, A.E. Glassgold, Formation of organic molecules and water in warm disk atmospheres. Astrophys. J. 743, A147 (2011). 18 pp.

    Article  ADS  Google Scholar 

  • K.I. Öberg, R. Murray-Clay, E. Bergin, A. Edwin, The effects of snowlines on C/O in planetary atmospheres. Astrophys. J. Lett. 743, L16 (2011). 5 pp.

    Article  ADS  Google Scholar 

  • D.P. O’Brien, K.J. Walsh, A. Morbidelli, S.N. Raymond, Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239, 74–84 (2014)

    Article  ADS  Google Scholar 

  • P. Odert, H. Lammer, N.V. Erkaev, A. Nikolaou, H.I.M. Lichtenegger, C.P. Johnstone, K.G. Kislyakova, M. Leitzinger, N. Tosi, Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets. Icarus (2018). https://doi.org/10.1016/j.icarus.2017.10.031

    Google Scholar 

  • C.W. Ormel, H.H. Klahr, The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 530, A43 (2010). 15 pp.

    Article  Google Scholar 

  • J.E. Owen, S. Mohanty, Habitability of terrestrial-mass planets in the HZ of M Dwarfs. I. H/He-dominated atmospheres. Mon. Not. R. Astron. Soc. 459(4), 4088–4108 (2016)

    Article  ADS  Google Scholar 

  • J.E. Owen, Y. Wu, Atmospheres of low-mass planets: the “Boil-off”. Astrophys. J. 817, 107 (2016). 14 pp.

    Article  ADS  Google Scholar 

  • S.-J. Paardekooper, C. Baruteau, F. Meru, Numerical convergence in self-gravitating disc simulations: initial conditions and edge effects. Mon. Not. R. Astron. Soc. 416, L65–L69 (2011)

    Article  ADS  Google Scholar 

  • O. Paníc, W.S. Holland, M.C. Wyatt, G.M. Kennedy, B.C. Matthews, J.F. Lestrade, B. Sibthorpe, J.S. Greaves, J.P. Marshall, N.M. Phillips, J. Tottle, First results of the SONS survey: submillimetre detections of debris discs. Mon. Not. R. Astron. Soc. 435, 1037–1046 (2013). https://doi.org/10.1093/mnras/stt1293

    Article  ADS  Google Scholar 

  • H. Parviainen, D. Gandolfi, M. Deleuil (the CoRoT Team), Transiting exoplanets from the CoRoT space mission. XXV. CoRoT-27b: a massive and dense planet on a short-period orbit. Astron. Astrophys. 562, A140 (2014). 12 pp.

    Article  Google Scholar 

  • I. Pascucci, D. Apai, K. Luhman, Th. Henning, J. Bouwman, M.R. Meyer, F. Lahuis, A. Natta, The different evolutions of gas and dust in disks around Sun-like and cool stars. Astrophys. J. 696, 143–159 (2009)

    Article  ADS  Google Scholar 

  • I. Pascucci, G. Herczeg, J.S. Carr, S. Bruderer, The atomic and molecular content of disks around very low-mass stars and brown dwarfs. Astrophys. J. 779, 178 (2013). 13 pp.

    Article  ADS  Google Scholar 

  • C. Petrovich, R. Malhotra, T. Scott, Planets near mean-motion resonances. Astrophys. J. 770, 24 (2013). 16 pp.

    Article  ADS  Google Scholar 

  • S. Pizzarello, Y. Huang, The deuterium enrichment of individual amino acids in carbonaceous meteorites: a case for the presolar distribution of biomolecule precursors. Geochim. Cosmochim. Acta 69, 599–605 (2005)

    Article  ADS  Google Scholar 

  • J.B. Pollack, O. Hubickyj, P. Bodenheimer, J.J. Lissauer, M. Podolak, Y. Greenzweig, Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996)

    Article  ADS  Google Scholar 

  • D. Porcelli, R.O. Pepin, Rare gas constraints on early Earth history, in Origin of the Earth and Moon, ed. by R.M. Canup, K. Richter (University of Arizona Press, Tucson, 2000), pp. 435–458

    Google Scholar 

  • C. Rab, C. Baldovin-Saavedra, O. Dionatos, E. Vorobyov, M. Güdel, The gas disk: evolution and chemistry. Space Sci. Rev. 205, 3–40 (2016). ibid. (2017, this volume)

    Article  ADS  Google Scholar 

  • R.R. Rafikov, Atmospheres of protoplanetary cores: critical mass for nucleated instability. Astrophys. J. 648, 666–682 (2006)

    Article  ADS  Google Scholar 

  • H. Rauer, C. Catala, C. Aerts (the PLATO Team), The PLATO 2.0 mission. Exp. Astron. 38, 249–330 (2014)

    Article  ADS  Google Scholar 

  • G.R. Ricker, S.W. Latham, R.K. Vanderspek (the TESS Team), The Transiting Exoplanet Survey Satellite (TESS). Bull. Am. Astron. Soc. 41, 193 (2009)

    ADS  Google Scholar 

  • L.A. Rogers, P. Bodenheimer, J.J. Lissauer, S. Seager, Formation and structure of low-density exo-Neptunes. Astrophys. J. 738, 59 (2011). 16 pp.

    Article  ADS  Google Scholar 

  • L.A. Rogers, Most 1.6Earth-radius planets are not rocky. Astrophys. J. 801, 41 (2015). 13 pp.

    Article  ADS  Google Scholar 

  • G.P. Rosotti, B. Ercolano, J.E. Owen, P.J. Armitage, The interplay between X-ray photoevaporation and planet formation. Mon. Not. R. Astron. Soc. 430, 1392–1401 (2013)

    Article  ADS  Google Scholar 

  • J.F. Rowe, J.L. Coughlin, V. Antoci, T. Barclay, N.M. Batalha, W.J. Borucki, C.J. Burke, S.T. Bryson, D.A. Caldwell, J.R. Campbell, J.H. Catanzarite, J.L. Christiansen, W. Cochran, R.L. Gilliland, F.R. Girouard, M.R. Haas, K.G. Hełminiak, C.E. Henze, K.L. Hoffman, S.B. Howell, D. Huber, R.C. Hunter, H. Jang-Condell, J.M. Jenkins, T.C. Klaus, D.W. Latham, J. Li, J.J. Lissauer, S.D. McCauliff, R.L. Morris, F. Mullally, A. Ofir, B. Quarles, E. Quintana, A. Sabale, S. Seader, A. Shporer, J.C. Smith, J.H. Steffen, M. Still, P. Tenenbaum, S.E. Thompson, J.D. Twicken, C. Van Laerhoven, A. Wolfgang, K.A. Zamudio, Planetary candidates observed by Kepler V: planet sample from Q1–Q12 (36 Months). Astrophys. J. Suppl. 217, 16 (2015). 22 pp.

    Article  ADS  Google Scholar 

  • V. Safronov, Evolution of the protoplanetary cloud and formation of the Earth and planets (English version 1972)

  • N.C. Santos, G. Israelian, M. Mayor, New extra-solar planets: the metallicity distribution revised, in Planetary Systems in the Universe—Observation and Evolution, ed. by A. Penny, P. Artymovicz, A.-M. Lagrange, S. Russel. Proceedings IAU Symposium, vol. 202 (2004), pp. 118–120

    Google Scholar 

  • B.M. Shustov, E. Mikhail, D. Bisikalo, V. de Castro, A.-I. Gómez, The World Space Observatory—UV project as a tool for exoplanet science, in Characterizing Stellar and Exoplanetary Environments. Astrophysics and Space Science Library, vol. 411 (Springer, Cham, 2015), pp. 275–287

    Google Scholar 

  • A. Sicilia-Aguilar, L.W. Hartmann, G. Fürész, T. Henning, C. Dullemond, W. Brandner, High-resolution spectroscopy in Tr 37: gas accretion evolution in evolved dusty disks. Astron. J. 132, 2135–2155 (2006)

    Article  ADS  Google Scholar 

  • I.A.G. Snellen, R.J. de Kok, E.J.W. de Mooij, A. Simon, The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465, 1049–1051 (2010)

    Article  ADS  Google Scholar 

  • D.S. Spiegel, K. Silverio, A. Burrows, Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets? Astrophys. J. 699, 1487–1500 (2009)

    Article  ADS  Google Scholar 

  • S.W. Stahler, F. Palla, The Formation of Stars (Wiley, Weinheim, 2005)

    Google Scholar 

  • D.J. Stevenson, Formation of the giant planets. Planet. Space Sci. 30, 755–764 (1982)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, J.I. Lunine, Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula. Icarus 75, 146–155 (1988)

    Article  ADS  Google Scholar 

  • A. Stökl, E.A. Dorfi, H. Lammer, Hydrodynamic simulations of captured protoatmospheres around Earth-like planets. Astron. Astrophys. 576, A87 (2015). 11 pp.

    Article  Google Scholar 

  • E. Svedenborg, Opera philosophica et mineralia (1734)

  • H. Tanaka, T. Takeuchi, W.R. Ward, Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2002)

    Article  ADS  Google Scholar 

  • L. Tu, C.P. Johnstone, M. Güdel, H. Lammer, The extreme ultraviolet and X-ray Sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015). 4 pp.

    Article  ADS  Google Scholar 

  • A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, G.E. Ballester, R. Ferlet, G. Hébrard, M. Mayor, An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003)

    Article  ADS  Google Scholar 

  • A. Vidal-Madjar, J.-M. Désert, A. Lecavelier des Etangs, G. Hébrard, G.E. Ballester, D. Ehrenreich, R. Ferlet, J.C. McConnell, M. Mayor, C.D. Parkinson, Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458b. Astrophys. J. Lett. 604, 69–72 (2004)

    Article  ADS  Google Scholar 

  • K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011)

    Article  ADS  Google Scholar 

  • J. Wang, D.A. Fischer, Revealing a universal planet-metallicity correlation for planets of different sizes around solar-type stars. Astron. J. 149, 14 (2015). 7 pp.

    Article  ADS  Google Scholar 

  • W.R. Ward, Protoplanet migration by nebula tides. Icarus 126, 261–281 (1997a)

    Article  ADS  Google Scholar 

  • W.R. Ward, Survival of planetary systems. Astrophys. J. 482, L211–L214 (1997b)

    Article  ADS  Google Scholar 

  • J.P. Williams, L.A. Cieza, Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011)

    Article  ADS  Google Scholar 

  • K. Willacy, H.H. Klahr, T.J. Millar, Th. Henning, Gas and grain chemistry in a protoplanetary disk. Astron. Astrophys. 338, 995–1005 (1998)

    ADS  Google Scholar 

  • J.N. Winn, D.C. Fabrycky, The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409–447 (2015)

    Article  ADS  Google Scholar 

  • J.A. Wood, The chondrite types and their origins, in Chondrites and the Protoplanetary Disk, ed. by A.N. Krot, E.R.D. Scott, B. Reipurth. ASP Conference Series, vol. 341 (2005), pp. 953–971

    Google Scholar 

  • R.D. Wordsworth, Atmospheric nitrogen evolution on Earth and Venus. Earth Planet. Sci. Lett. 447, 103–111 (2016)

    Article  ADS  Google Scholar 

  • G. Wuchterl, The critical mass for protoplanets revised—massive envelopes through convection. Icarus 106, 323–334 (1993)

    Article  ADS  Google Scholar 

  • M. Wyatt, A.P. Jackson, Insights into planet formation from debris disks. II. Giant impacts in extrasolar planetary systems. Space Sci. Rev. 205, 231–265 (2016a). ibid. (2017, this volume)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This brief introduction to the role of protoplanetary disks in planetary formation and evolution was conceived during the august 2014 joint ISSI-Beijing/ISSI workshop held in Beijing on “The Disk in Relation to the Formation of Planets and their Protoatmospheres”. HL and MB thank ISSI-Beijing for its much-appreciated hospitality during the workshop, and all the participants of the workshop and contributors to this special issue of Space Science Reviews and to the corresponding SSSI book for lively discussions and highly appreciated efforts. HL also thanks the Austrian Science Fund (FWF) NFN project S11601-N16 “Pathways to Habitability: From Disks to Stars, Planets and Life” and the related FWF NFN subprojects S11607-N16 “Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions”. We also thank three referees for their detailed suggestions and recommendations which helped us to improve considerably this introductory chapter, and Guest Editor Veerle Jasmin Serken for her patient and efficient handling of the review of this manuscript. Finally, HL thanks P. Cubillos and L. Fossati for discussions related to radius-mass relations of sub-Neptunes and observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Blanc.

Additional information

From Disks to Planets: The Making of Planets and Their Early Atmospheres

Edited by M. Blanc, G. Herczeg, H. Lammer, V. Sterken, W. Benz, S. Udry, R. Rodrigo and M. Falanga

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lammer, H., Blanc, M. From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction. Space Sci Rev 214, 60 (2018). https://doi.org/10.1007/s11214-017-0433-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-017-0433-x

Keywords

Navigation