Skip to main content

Advertisement

Log in

The Composition of the Solar Wind in Polar Coronal Holes

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The solar wind charge state and elemental compositions have been measured with the Solar Wind Ion Composition Spectrometers (SWICS) on Ulysses and ACE for a combined period of about 25 years. This most extensive data set includes all varieties of solar wind flows and extends over more than one solar cycle. With SWICS the abundances of all charge states of He, C, N, O, Ne, Mg, Si, S, Ar and Fe can be reliably determined (when averaged over sufficiently long time periods) under any solar wind flow conditions. Here we report on results of our detailed analysis of the elemental composition and ionization states of the most unbiased solar wind from the polar coronal holes during solar minimum in 1994–1996, which includes new values for the abundance S, Ca and Ar and a more accurate determination of the 20Ne abundance. We find that in the solar minimum polar coronal hole solar wind the average freezing-in temperature is ∼1.1×106 K, increasing slightly with the mass of the ion. Using an extrapolation method we derive photospheric abundances from solar wind composition measurements. We suggest that our solar-wind-derived values should be used for the photospheric ratios of Ne/Fe=1.26±0.28 and Ar/Fe=0.030±0.007.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Asplund, N. Grevesse, A.J. Sauval, in Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert, ed. by T.G. Barnes III, F.N. Bash, vol. 336 (Astronomical Society of the Pacific, 2005), p. 25

  • S.J. Bame, J.R. Asbridge, W.C. Feldman, J.T. Gosling, J. Geophys. Res. 82, 1487 (1977)

    ADS  Google Scholar 

  • A. Bürgi, J. Geiss, Sol. Phys. 103, 347–383 (1986)

    Article  ADS  Google Scholar 

  • U. Feldman, K.G. Widing, Space Sci. Rev. 107, 665–720 (2003)

    Article  ADS  Google Scholar 

  • J. Geiss, Space Sci. Rev. 33, 201 (1982)

    Article  ADS  Google Scholar 

  • J. Geiss, Space Sci. Rev. 85, 241–252 (1998)

    Article  ADS  Google Scholar 

  • J. Geiss, P. Bochsler, in Proc. Rapports Isotopiques dans le Système Solaire (Cepadues Editions, Paris, 1985), pp. 213–228

    Google Scholar 

  • J. Geiss, P. Eberhardt, F. Bühler, J. Meister, P. Signer, Geophys. Res. 75, 5972–5979 (1970a)

    Article  ADS  Google Scholar 

  • J. Geiss, P. Hirt, H. Leutwyler, Sol. Phys. 12, 458 (1970b)

    Article  ADS  Google Scholar 

  • J. Geiss, F. Bühler, H. Cerutti, P. Eberhardt, C.H. Filleux, J. Meister, P. Signer, Space Sci. Rev. 110, 307–335 (2004)

    Article  ADS  Google Scholar 

  • J. Geiss, G. Gloeckler, R. von Steiger, H. Balsiger, L.A. Fisk, A.B. Galvin, F.M. Ipavich, S. Livi, J.F. McKenzie, K.W. Ogilvie, B. Wilken, Science 268, 1033–1036 (1995)

    Article  ADS  Google Scholar 

  • G. Gloeckler, L.A. Fisk (2007), this volume

  • G. Gloeckler, J. Geiss, in Cosmic Abundances of Matter, ed. by C.J. Waddington. AIP Conf. Proc., vol. 183 (1989), p. 49

  • G. Gloeckler, J. Geiss, in The Light Elements and Their Evolution, ed. by L. Da Silva, M. Spite, J.R. De Medeiros. AIU Symposium, vol. 198 (2000), p. 224

  • G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J.C. Cain, J. Fischer et al., Astron. Astrophys. Suppl. Ser. 92, 267 (1992)

    ADS  Google Scholar 

  • G. Gloeckler, F.M. Ipavich, D.C. Hamilton, B. Wilken, G. Kremser, EOS Trans. AGU 70, 424 (1989)

    Google Scholar 

  • N. Grevesse, A.J. Sauval, Space Sci. Rev. 85, 161–174 (1998)

    Article  ADS  Google Scholar 

  • P. Mazzotta, G. Mazzitelli, S. Colafrancesco, N. Vittorio, Astron. Astrophys. Suppl. Ser. 133, 403–409 (1998)

    Article  ADS  Google Scholar 

  • M. Neugebauer, C.W. Snyder, J. Geophys. Res. 71, 4469 (1966)

    ADS  Google Scholar 

  • F. Perez Hernandez, J. Christensen-Dalsgaard, Mon. Not. Roy. Astron. Soc. 269, 475 (1994)

    ADS  Google Scholar 

  • D.V. Reames, Space Sci. Rev. 90, 413 (1999)

    Article  ADS  Google Scholar 

  • R. von Steiger, J. Geiss, Astron. Astrophys. 225, 222–238 (1989)

    ADS  Google Scholar 

  • R. von Steiger, S.P. Christon, G. Gloeckler, F.M. Ipavich, Astrophys. J. 389, 791–799 (1992)

    Article  ADS  Google Scholar 

  • R. von Steiger, N.A. Schwadron, L.A. Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, R.F. Wimmer-Schweingruber, T.H. Zurbuchen, J. Geophys. Res. 105, 27,217 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Gloeckler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gloeckler, G., Geiss, J. The Composition of the Solar Wind in Polar Coronal Holes. Space Sci Rev 130, 139–152 (2007). https://doi.org/10.1007/s11214-007-9189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-007-9189-z

Keywords

Navigation