Skip to main content
Log in

Automatic Detection of Magnetic \(\delta\) in Sunspot Groups

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Large and magnetically complex sunspot groups are known to be associated with flares. To date, the Mount Wilson scheme has been used to classify sunspot groups based on their morphological and magnetic properties. The most flare-prolific class, the \(\delta\) sunspot group, is characterised by opposite-polarity umbrae within a common penumbra, separated by less than 2. In this article, we present a new system, called the Solar Monitor Active Region Tracker-Delta Finder (SMART-DF), which can be used to automatically detect and classify magnetic \(\delta\)s in near-realtime. Using continuum images and magnetograms from the Helioseismic and Magnetic Imager (HMI) onboard NASA’s Solar Dynamics Observatory (SDO), we first estimate distances between opposite-polarity umbrae. Opposite-polarity pairs with distances of less that 2 are then identified, and if these pairs are found to share a common penumbra, they are identified as a magnetic \(\delta\) configuration. The algorithm was compared to manual \(\delta\) detections reported by the Space Weather Prediction Center (SWPC), operated by the National Oceanic and Atmospheric Administration (NOAA). SMART-DF detected 21 out of 23 active regions (ARs) that were marked as \(\delta\) spots by NOAA during 2011 – 2012 (within \({\pm}\,60 ^{\circ} \) longitude). SMART-DF in addition detected five ARs that were not announced as \(\delta\) spots by NOAA. The near-realtime operation of SMART-DF resulted in many \(\delta\)s being identified in advance of NOAA’s daily notification. SMART-DF will be integrated into SolarMonitor ( www.solarmonitor.org ) and the near-realtime information will be available to the public.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. www.swpc.noaa.gov/sites/default/files/images/u2/Glossary.pdf .

  2. www.solarmonitor.org .

References

  • Ahmed, O.W., Qahwaji, R., Colak, T., Higgins, P.A., Gallagher, P.T., Bloomfield, D.S.: 2013, Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Solar Phys. 283, 157. DOI . ADS .

    Article  ADS  Google Scholar 

  • Allen, C.W.: 1976, Astrophysical Quantities, Athlone Press, London. ADS .

    Google Scholar 

  • Aschwanden, M.J., Freeland, S.L.: 2012, Automated solar flare statistics in soft X-rays over 37 years of GOES observations: the invariance of self-organized criticality during three solar cycles. Astrophys. J. 754, 112. DOI . ADS .

    Article  ADS  Google Scholar 

  • Barnes, G., Leka, K.D.: 2008, Evaluating the performance of solar flare forecasting methods. Astrophys. J. Lett. 688, L107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Barra, V., Delouille, V., Kretzschmar, M., Hochedez, J.-F.: 2009, Fast and robust segmentation of solar EUV images: algorithm and results for solar cycle 23. Astron. Astrophys. 505, 361. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bloomfield, D.S., Higgins, P.A., McAteer, R.T.J., Gallagher, P.T.: 2012, Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J. Lett. 747, L41. DOI . ADS .

    Article  ADS  Google Scholar 

  • Colak, T., Qahwaji, R.: 2008, Automated McIntosh-based classification of sunspot groups using MDI images. Solar Phys. 248, 277. DOI . ADS .

    Article  ADS  Google Scholar 

  • Colak, T., Qahwaji, R.: 2009, Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather 7, 6001. DOI . ADS .

    Article  ADS  Google Scholar 

  • Conlon, P.A., Gallagher, P.T., McAteer, R.T.J., Ireland, J., Young, C.A., Kestener, P., Hewett, R.J., Maguire, K.: 2008, Multifractal properties of evolving active regions. Solar Phys. 248, 297. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cui, Y., Li, R., Zhang, L., He, Y., Wang, H.: 2006, Correlation between solar flare productivity and photospheric magnetic field properties. 1. Maximum horizontal gradient, length of neutral line, number of singular points. Solar Phys. 237, 45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Curto, J.J., Blanca, M., Martínez, E.: 2008, Automatic sunspots detection on full-disk solar images using mathematical morphology. Solar Phys. 250, 411. DOI . ADS .

    Article  ADS  Google Scholar 

  • Emslie, A.G., Dennis, B.R., Shih, A.Y., Chamberlin, P.C., Mewaldt, R.A., Moore, C.S., Share, G.H., Vourlidas, A., Welsch, B.T.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 759, 71. DOI . ADS .

    Article  ADS  Google Scholar 

  • Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gallagher, P.T., Moon, Y.-J., Wang, H.: 2002, Active-region monitoring and flare forecasting I. Data processing and first results. Solar Phys. 209, 171. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Barbieri, L., Lu, G., Plunkett, S.P., Skoug, R.M.: 2005, Introduction to the special section: violent Sun–Earth connection events of October–November 2003. Geophys. Res. Lett. 32, 3. DOI . ADS .

    Google Scholar 

  • Greisen, E.W., Calabretta, M.R.: 2002, Representations of world coordinates in FITS. Astron. Astrophys. 395, 1061. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1919, The magnetic polarity of Sun-spots. Astrophys. J. 49, 153. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hapgood, M., Thomson, A.: 2010, Space Weather: Its Impact on Earth and Implications for Business, Lloyd’s 360 Risk Insight, London.

    Google Scholar 

  • Higgins, P.A., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2011, Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res. 47, 2105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Künzel, H.: 1960, Die Flare-Häufigkeit in Fleckengruppen unterschiedlicher Klasse und magnetischer Struktur. Astron. Nachr. 285, 271. ADS .

    Article  ADS  Google Scholar 

  • Künzel, H.: 1965, Zur Klassifikation von Sonnenfleckengruppen. Astron. Nachr. 288, 177. ADS .

    ADS  Google Scholar 

  • LaBonte, B.J., Georgoulis, M.K., Rust, D.M.: 2007, Survey of magnetic helicity injection in regions producing X-class flares. Astrophys. J. 671, 955. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lefebvre, S., Rozelot, J.-P.: 2004, A new method to detect active features at the solar limb. Solar Phys. 219, 25. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2007, Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys. J. 656, 1173. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leka, K.D., Skumanich, A.: 1998, The evolution of pores and the development of penumbrae. Astrophys. J. 507, 454. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martens, P.C.H., Attrill, G.D.R., Davey, A.R., Engell, A., Farid, S., Grigis, P.C., Kasper, J., Korreck, K., Saar, S.H., Savcheva, A., Su, Y., Testa, P., Wills-Davey, M., Bernasconi, P.N., Raouafi, N.-E., Delouille, V.A., Hochedez, J.F., Cirtain, J.W., Deforest, C.E., Angryk, R.A., de Moortel, I., Wiegelmann, T., Georgoulis, M.K., McAteer, R.T.J., Timmons, R.P.: 2012, Computer vision for the solar dynamics observatory (SDO). Solar Phys. 275, 79. DOI . ADS .

    Article  ADS  Google Scholar 

  • McAteer, R.T.J., Gallagher, P.T., Ireland, J., Young, C.A.: 2005, Automated boundary-extraction and region-growing techniques applied to solar magnetograms. Solar Phys. 228, 55. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251. DOI . ADS .

    Article  ADS  Google Scholar 

  • Messerotti, M., Zuccarello, F., Guglielmino, S.L., Bothmer, V., Lilensten, J., Noci, G., Storini, M., Lundstedt, H.: 2009, Solar weather event modelling and prediction. Space Sci. Rev. 147, 121. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nordlund, Å., Stein, R.F., Asplund, M.: 2009, Solar surface convection. Living Rev. Solar Phys. 6, 2. ADS .

    Article  ADS  Google Scholar 

  • Sammis, I., Tang, F., Zirin, H.: 2000, The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J. 540, 583. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Smart, W.M.: 1965, Text-Book on Spherical Astronomy, Cambridge University Press, Cambridge. ADS .

    Google Scholar 

  • Solanki, S.K.: 2003, Sunspots: an overview. Astron. Astrophys. Rev. 11, 153. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thompson, W.T.: 2006, Coordinate systems for solar image data. Astron. Astrophys. 449, 791. DOI . ADS .

    Article  ADS  Google Scholar 

  • Verbeeck, C., Higgins, P.A., Colak, T., Watson, F.T., Delouille, V., Mampaey, B., Qahwaji, R.: 2013, A multi-wavelength analysis of active regions and sunspots by comparison of automatic detection algorithms. Solar Phys. 283, 67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Watson, F., Fletcher, L., Dalla, S., Marshall, S.: 2009, Modelling the longitudinal asymmetry in sunspot emergence: the role of the Wilson depression. Solar Phys. 260, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yuan, Y., Shih, F.Y., Jing, J., Wang, H.-M.: 2010, Automated flare forecasting using a statistical learning technique. Res. Astron. Astrophys. 10, 785. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkov, S., Zharkova, V., Ipson, S., Benkhalil, A.: 2004, Automated recognition of sunspots on the soho/mdi white light solar images. In: Negoita, M., Howlett, R., Jain, L. (eds.) Knowledge-Based Intelligent Information and Engineering Systems, Lect. Notes in Comp. Sci. 3215, Springer, Berlin, Heidelberg, ISBN 978-3-540-23205-6. DOI .

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has received financial support from EOARD (SP), the Irish Research Council-Enterprise partnership (PAH), and the European Space Agency Prodex programme (DSB). We acknowledge NASA/SDO and the HMI science teams for the data used in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreejith Padinhatteeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padinhatteeri, S., Higgins, P.A., Shaun Bloomfield, D. et al. Automatic Detection of Magnetic \(\delta\) in Sunspot Groups. Sol Phys 291, 41–53 (2016). https://doi.org/10.1007/s11207-015-0808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0808-7

Keywords

Navigation