Skip to main content
Log in

Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Quinoa (Chenopodium quinoa) seed has gained a great interest in the last years, mainly due to its nutritional properties and its content of antioxidant substances with health-promoting properties in humans. In this work, the effect of germination time and fermentation on the levels of antioxidant compounds (ascorbic acid, tocopherol isomers and phenolic compounds) and antioxidant activity of quinoa seeds was evaluated. Fermentation was carried out naturally by the microorganisms present in the seeds or by inoculation with two Saccharomyces cerevisiae strains (used for baking and brewing). Ascorbic acid and total tocopherols were significantly increased (p ≤ 0.05) after 72 h of germination process in comparison with raw quinoa seeds, whilst fermentation caused a decrease in both types of compounds. Phenolic compounds and antioxidant capacity were improved using both bioprocesses, being this effect more noticeable for germination process (101 % of increase after three days of germination). Germination and fermentation proved to be desirable procedures for producing enriched ingredients with health-promoting antioxidant compounds in a natural way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abugoch James LE (2009) Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res 58:1–31

    Article  CAS  Google Scholar 

  2. Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. J Sci Food Agric 90:2541–2547

    Article  Google Scholar 

  3. Tang Y, Li X, Zhang B, Chen PX, Liu R, Tsao R (2015) Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem 166:380–388

    Article  CAS  Google Scholar 

  4. Alvarez-Jubete L, Holse M, Hansen Å, Arendt EK, Gallagher E (2009) Impact of baking on vitamin E content of pseudocereals amaranth, quinoa, and buckwheat. Cereal Chem 86:511–515

    Article  CAS  Google Scholar 

  5. Deželak M, Zarnkow M, Becker T, Košir IJ (2014) Processing of bottom-fermented gluten-free beer-like beverages based on buckwheat and quinoa malt with chemical and sensory characterization. J Inst Brew 120:360–370

    Google Scholar 

  6. Fardet A (2014) How can both the health potential and sustainability of cereal products be improved? A French perspective. J Cereal Sci 60:540–548

    Article  Google Scholar 

  7. Singh AK, Rehal J, Kaur A, Jyot G (2015) Enhancement of attributes of cereals by germination and fermentation: a review. Crit Rev Food Sci Nutr 55:1575–1589

    Article  CAS  Google Scholar 

  8. Hübner F, Arendt EK (2013) Germination of cereal grains as a way to improve the nutritional value: a review. Crit Rev Food Sci Nutr 53:853–861

    Article  Google Scholar 

  9. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol 299:152–178

    Article  CAS  Google Scholar 

  10. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30

  11. Kraujalis P, Venskutonis PR, Kraujaliené V, Pukalskas A (2013) Antioxidant properties and preliminary evaluation of phytochemical composition of different anatomical parts of amaranth. Plant Foods Hum Nutr 68:322–328

    Article  CAS  Google Scholar 

  12. Romero-de Soto MD, García-Salas P, Fernández-Arroyo S, Carretero AS, Fernández-Campos F, Clares-Naveros B (2013) Antioxidant activity evaluation of new dosage forms as vehicles for dehydrated vegetables. Plant Foods Hum Nutr 68:200–206

    Article  CAS  Google Scholar 

  13. Carciochi RA, Galván D’Alessandro L, Manrique GD (2016) Effect of roasting conditions on the antioxidant compounds of quinoa seeds. Int J Food Sci Technol 51:1018–1025

    Article  CAS  Google Scholar 

  14. Kafkas E, Koşar M, Türemis N (2006) Analysis of sugars, organic acids and vitamin C contents of blackberry genotypes from Turkey. Food Chem 97:732–736

    Article  CAS  Google Scholar 

  15. Fernández MB, Perez EE, Crapiste GH, Nolasco SM (2011) Kinetic study of canola oil and tocopherol extraction: parameter comparison of nonlinear models. J Food Eng 111:682–689

    Article  Google Scholar 

  16. Fernández-Orozco R, Frías J, Zielinski H, Muñoz R, Piskula MK, Kozlowska H, Vidal-Valverde C (2009) Evaluation of bioprocesses to improve the antioxidant properties of chickpeas. LWT–Food Sci Technol 42:885–892

  17. Lintschinger J, Fuchs N, Moser H, Jäger R, Hlebeina T, Markolin G, Gössler W (1997) Uptake of various trace elements during germination of wheat, buckwheat and quinoa. Plant Foods Hum Nutr 50:223–237

    Article  CAS  Google Scholar 

  18. Frias J, Miranda LM, Doblado R, Vidal-Valverde C (2005) Effect of germination and fermentation on the antioxidant vitamin content and antioxidant capacity of Lupinus albus L. var. multolupa. Food Chem 92:211–220

    Article  CAS  Google Scholar 

  19. Xu M, Dong J, Zhu M (2005) Effects of germination conditions on ascorbic acid level and yield of soybeans sprouts. J Sci Food Agric 85:943–947

    Article  CAS  Google Scholar 

  20. Leenhardt F, Lyan B, Rock E, Boussard A, Potus J, Chanliaud E, Remesy C (2006) Wheat lipoxygenase activity induces greater loss carotenoids than vitamin E during breadmaking. J Agric Food Chem 54:1710–1715

    Article  CAS  Google Scholar 

  21. Ruales J, Nair BM (1993) Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa Willd.) seeds. Food Chem 48:131–136

    Article  CAS  Google Scholar 

  22. Coulter L, Lorenz K (1990) Quinoa composition, nutritional value, food applications. Lebensm Wiss Technol 23:203–207

    CAS  Google Scholar 

  23. Miranda M, Vega-Gálvez A, López J, Parada G, Sanders M, Aranda M, Uribe E, Di Scala K (2010) Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd.). Ind Crop Prod 32:258–263

    Article  CAS  Google Scholar 

  24. Hahm TS, Park SJ, Lo YM (2009) Effects of germination on chemical composition and functional properties of sesame (Sesamum indicum L.) seeds. Bioresour Technol 100:1643–1647

    Article  CAS  Google Scholar 

  25. Gorinstein S, Vargas OJM, Jaramillo NO, Salas IA, Ayala ALM, Arancibia-Avila P, Toledo F, Katrich E, Trakhtenberg S (2007) The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. Eur Food Res Technol 225:321–328

    Article  CAS  Google Scholar 

  26. Alvarez-Jubete L, Wijngaard H, Arendt EK, Gallagher E (2010) Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chem 119:770–778

    Article  CAS  Google Scholar 

  27. Katina K, Liukkonen KH, Kaukovirta-Norja A, Adlercreutz H, Heinonen SM, Lampi AM, Pihlava JM, Poutanen K (2007) Fermentation-induced changes in the nutritional value of native or germinated rye. J Cereal Sci 46:348–355

    Article  CAS  Google Scholar 

  28. Moore J, Cheng Z, Hao J, Guo G, Liu JG, Lin C, Yu LL (2007) Effects of solid-state yeast treatment on the antioxidant properties and protein and fiber compositions of common hard wheat bran. J Agric Food Chem 55:10173–10182

    Article  CAS  Google Scholar 

  29. Ðordevic TM, Šiler-Marinkovic SS, Dimitrijevic-Brankovic SI (2010) Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem 119:957–963

    Article  Google Scholar 

  30. Katina K, Laitila A, Juvonen R, Liukkonen KH, Kariluoto S, Piironen V, Landberg R, Aman P, Poutanen K (2007) Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol 24:175–186

    Article  CAS  Google Scholar 

  31. Hur SJ, Lee SY, Kim YC, Choi I, Kim GB (2014) Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem 160:346–356

    Article  CAS  Google Scholar 

  32. Othman NB, Roblain D, Chammen N, Thonart P, Hamdi M (2009) Antioxidant phenolic compounds loss during the fermentation of Chétoui olives. Food Chem 116:662–669

    Article  Google Scholar 

  33. Svensson L, Sekwati-Monang B, Lopes Lutz D, Scieber A, Gänzle MG (2010) Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). J Agric Food Chem 58:9214–9220

    Article  CAS  Google Scholar 

  34. Rodríguez H, Curiel JA, Landete JM, de las Rivas B, de Felipe FL, Gómez- Cordovés C, Mancheño JM, Muñoz R (2009) Food phenolics and lactic acid bacteria. Int J Food Microbiol 132:79–90

    Article  Google Scholar 

  35. Koleva II, van Beek TA, Linssen JPH, De Groot A, Evstatieva LN (2002) Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal 13:8–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) and Eurotango II programme for the partial support of this project (Ph.D. fellowships granted to Carciochi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Galván-D’Alessandro.

Ethics declarations

This article does not contain any studies with human or animal subjects.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Ramiro Ariel Carciochi and Leandro Galván-D’Alessandro are authors contributed equally to this work

Electronic Supplementary Material

Table S1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carciochi, R.A., Galván-D’Alessandro, L., Vandendriessche, P. et al. Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds. Plant Foods Hum Nutr 71, 361–367 (2016). https://doi.org/10.1007/s11130-016-0567-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-016-0567-0

Keywords

Navigation