Skip to main content

Advertisement

Log in

Can Neurochemical Changes of Mood Disorders Explain the Increase Risk of Epilepsy or its Worse Seizure Control?

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The existence of a bidirectional relation between mood disorders and epilepsy has been suggested by six population-based studies. Furthermore, three studies have associated a higher risk of treatment-resistant epilepsy with a history of depression preceding the onset of epilepsy. Common pathogenic mechanisms operant in depression and epilepsy may provide a possible explanation of these observations. This article reviews some of the leading pathogenic mechanisms of depression with respect to potential proconvulsant properties that may provide explanations for these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis A (1934) Melancholia: a historical review. J Ment Sci 80:1–42

    Google Scholar 

  2. Forsgren L, Nystrom L (1990) An incident case-referent study of epileptic seizures in adults. Epilepsy Res 6:66–81

    Article  CAS  PubMed  Google Scholar 

  3. Hesdorffer DC, Hauser WA, Ludvigsson P, Olafsson E, Kjartansson O (2006) Depression and attempted suicide as risk factors for incident unprovoked seizures and epilepsy. Ann Neurol 59:35–41

    Article  PubMed  Google Scholar 

  4. Hesdorffer DC, Hauser WA, Annegers JF, Cascino G (2000) Major depression is a risk factor for seizures in older adults. Ann Neurol 47:246–249

    Article  CAS  PubMed  Google Scholar 

  5. Hesdorffer DC, Ishihara L, Mynepalli L, Webb DJ, Weil J, Hauser WA (2012) Epilepsy, suicidality, and psychiatric disorders: a bidirectional association. Ann Neurol 72:184–191

    Article  PubMed  Google Scholar 

  6. Jossephson CB, Lowerison M, Vallerand I, Sajobi TT, Patten S, Jette N, Wiebe S (2017) Association of depression and treated depression with epilepsy and seizure outcomes: a multicohort analysis. JAMA Neurol. doi:10.1001/jamaneurol.2016.5042

    Google Scholar 

  7. Hitiris N, Mohanraj R, Norrie J et al (2007) Predictors of pharmacoresistant epilepsy. Epilepsy Res 75:192–196

    Article  CAS  PubMed  Google Scholar 

  8. Petrovski S, Szoeke CEI, Jones NC, Salzberg MR, Sheffield LJ, Huggins RM et al (2010) Neuropsychiatric symptomatology predicts seizure recurrence in newly treated patients. Neurology 75:1015–1021

    Article  CAS  PubMed  Google Scholar 

  9. Kanner AM, Byrne R, Chicharro A et al (2009) A lifetime psychiatric history predicts a worse seizure outcome following temporal lobectomy. Neurology 72:793–799

    Article  CAS  PubMed  Google Scholar 

  10. Cleary RA, Thompson PJ, Fox Z, Foong J (2012) Predictors of psychiatric and seizure outcome following temporal lobe epilepsy surgery. Epilepsia 53(10):1705–1712

    Article  PubMed  Google Scholar 

  11. de Araújo Filho GM, Gomes FL, Mazetto L, Marinho MM, Tavares IM, Caboclo LO et al (2012) Major depressive disorder as a predictor of a worse seizure outcome one year after surgery in patients with temporal lobe epilepsy and mesial temporal sclerosis. Seizure 8:619–623

    Article  Google Scholar 

  12. Kanner AM (2012) Can neurobiological pathogenic mechanisms of depression facilitate the development of seizure disorders? Lancet Neurol 11(12):1093–1102

    Article  CAS  PubMed  Google Scholar 

  13. Kanner AM, Mazarati A, Koepp M (2014) Biomarkers of epileptogenesis: psychiatric comorbidities (?) Neurotherapeutics 11(2):358–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanacora G, Mason GF, Rothman DL, Krystal JH (2002) Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry 159:663–665

    Article  PubMed  Google Scholar 

  15. McCullumsmith RE, Meador-Woodruff JH (2002) Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology 26:368–375

    Article  CAS  PubMed  Google Scholar 

  16. Zarate CA, Quiroz J, Payne J, Manji HK (2002) Modulators of the glutamatergic system: implications for the development of improved therapeutics in mood disorders. Psychopharmacol Bull 36:35–83

    PubMed  Google Scholar 

  17. Levine K, Panchalingam K, Rapaport S, Gershon S, McClure RJ, Pettegrew JW (2000) Increased cerebrospinal fluid glutamine levels in depressed patients. Biol Psychiatry 47:586–593

    Article  CAS  PubMed  Google Scholar 

  18. Kugaya A, Sanacora G (2005) Beyond monoamines: glutamatergic function in mood disorders. CNS Spectr 10:808–819

    Article  PubMed  Google Scholar 

  19. Mitani H, Shirayama Y, Yamada T, Maeda K, Ashby CR Jr, Kawahara R (2006) Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Prog Neuropsychopharmacol Biol Psychiatry 30:1155–1158

    Article  CAS  PubMed  Google Scholar 

  20. Hashimoto K, Sawa A, Iyo M (2007) Increased levels of glutamate in brains of patients with mood disorders. Biol Psychiatry 25:1310–1316

    Article  Google Scholar 

  21. Zink M, Vollmayr B, Gebicke-Haerter PJ, Henn FA (2010) Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology 58:465–473

    Article  CAS  PubMed  Google Scholar 

  22. Berman RM, Cappiello A, Anand A et al (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  23. Zarate CA Jr, Singh JB, Carlson PJ et al (2006) A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864

    Article  CAS  PubMed  Google Scholar 

  24. Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW (2008) An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-d-aspartate antagonist, CP-101,606, in patients with treatment refractory major depressive disorder. J Clin Psychopharmacol 28:631–637

    Article  CAS  PubMed  Google Scholar 

  25. Bonanno G, Giambelli R, Raiteri L et al (2005) Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus. J Neurosci 25:3270–3279

    Article  CAS  PubMed  Google Scholar 

  26. Gerner RH, Hare TA (1981) CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. Am J Psychiatry 138:1098–1101

    Article  CAS  PubMed  Google Scholar 

  27. Sanacora G, Mason GF, Rothman et al (1999) Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 56:1043–1047

    Article  CAS  PubMed  Google Scholar 

  28. Sanacora G, Gueorguieva R, Epperson et al (2004) Subtype-specific alterations of gammaaminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 61:705–713

    Article  CAS  PubMed  Google Scholar 

  29. Bhagwagar Z, Wylezinska M, Jezzard et al (2007) Reduction in occipital cortex gammaaminobutyric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects. Biol Psychiatry 61:806–812

    Article  CAS  PubMed  Google Scholar 

  30. Sanacora G, Mason GF, Rothman DL et al (2003) Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psychiatry 160:577–579

    Article  PubMed  Google Scholar 

  31. Davies CH, Davies SN, Collingridge GL (1990) Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J Physiol 424:513–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prendiville S, Gale K (1993) Anticonvulsant effect of fluoxetine on focally evoked limbic motor seizures in rats. Epilepsia 34(2):381–384

    Article  CAS  PubMed  Google Scholar 

  33. Mazarati AM, Siddarth P, Baldwin RA, Sankar R (2008) Depression after status epilepticus: behavioural and biochemical deficits and effects of fluoxetine. Brain 131:2071–2083

    Article  PubMed  PubMed Central  Google Scholar 

  34. Clinckers R, Smolders I, Meurs A et al (2004) Anticonvulsant action of hippocampal dopamine and serotonin is independently mediated by D2 and 5-HT1A receptors. J Neurochem 89:834–843

    Article  CAS  PubMed  Google Scholar 

  35. Dailey JW, Mishra PK, Ko KH, Penny JE, Jobe PC (1992) Serotonergic abnormalities in the central nervous system of seizure-naive genetically epilepsy-prone rats. Life Sci 50:319–326

    Article  CAS  PubMed  Google Scholar 

  36. Lopez-Meraz ML, Gonzalez-Trujano ME, Neri-Bazan L, Hong E, Rocha LL (2005) 5-HT1A receptor agonists modify seizures in three experimental models in rats. Neuropharmacology 49:367–375

    Article  CAS  PubMed  Google Scholar 

  37. Meldrum BS, Anlezark GM, Adam HK et al (1982) Anticonvulsant and proconvulsant properties of viloxazine hydrochloride: pharmacological and pharmacokinetic studies in rodents and the epileptic baboon. Psychopharmacology 76:212–217

    Article  CAS  PubMed  Google Scholar 

  38. Piette Y, Delaunois AL, De Shaepdryver AF et al (1963) Imipramine and electroshock threshold. Arch Int Pharmacodyn Ther 144:293–297

    CAS  PubMed  Google Scholar 

  39. Brennan TJ, Seeley WW, Kilgard M, Schreiner CE, Tecott LH (1997) Sound-induced seizures in serotonin 5-HT2c receptor mutant mice. Nat Genet 16(4):387–390

    Article  CAS  PubMed  Google Scholar 

  40. Yan QS, Jobe PC, Dailey JW (1995) Further evidence of anticonvulsant role for 5-hydroxytryptamine in genetically epilepsy prone rats. Br J Pharmacol 115:1314–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alper K, Schwartz KA, Kolts RL, Khan A (2007) Seizure incidence in psychopharmacological clinical trials: an analysis of Food and Drug Administration (FDA) summary basis of approval reports. Biol Psychiatry 62(4):345–354

    Article  PubMed  Google Scholar 

  42. Favale E, Audenino D, Cocito L, Albano C (2003) The anticonvulsant effect of citalopram as an indirect evidence of serotonergic impairment in human epileptogenesis. Seizure 12(5):316–318

    Article  CAS  PubMed  Google Scholar 

  43. Favale E, Rubino V, Mainardi P, Lunardi G, Albano C (1995) The anticonvulsant effect of fluoxetine in humans. Neurology 45:1926

    Article  CAS  PubMed  Google Scholar 

  44. Specchio LM, Iudice A, Specchio N, La Neve A, Spinelli A, Galli R et al (2004) Citalopram as treatment of depression in patients with epilepsy. Clin Neuropharmacol 27(3):133–136

    Article  CAS  PubMed  Google Scholar 

  45. Ribot R, Ouyang B, Kanner AM (2017) The impact of antidepressants on seizure frequency and depressive and anxiety disorders of patients with epilepsy: is it worth investigating? Epilepsy Behav 70(Pt A):5–9. doi:10.1016/j.yebeh.2017.02.032.

    Article  PubMed  Google Scholar 

  46. Toczek MT, Carson RE, Lang L (2003) PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy. Neurology 60:749–756

    Article  CAS  PubMed  Google Scholar 

  47. Hasler G, Bonwetsch R, Giovacchini G (2007) 5-HT(1A) receptor binding in temporal lobe epilepsy patients with and without major depression. Biol Psychiatry 62:1258–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Savic I, Lindstrom P, Gulyas B, Halldin C, Andree B, Farde L (2004) Limbic reductions of 5-HT1A receptor binding in human temporal lobe epilepsy. Neurology 62:1343–1351

    Article  CAS  PubMed  Google Scholar 

  49. Sargent PA, Kjaer KH, Bench CJ et al (2000) Brain serotonin 1 A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry 57:174–180

    Article  CAS  PubMed  Google Scholar 

  50. Maes M (1999) Major depression and activation of the inflammatory response system. Adv Exp Med Biol 461:25–45

    Article  CAS  PubMed  Google Scholar 

  51. Parsadaniantz SM, Batsche E, Gegout-Pottie P et al (1997) Effects of continuous infusion of interleukin 1 beta on corticotropin-releasing hormone (CRH), CRH receptors, proopiomelanocortin gene expression and secretion of corticotropin, beta-endorphin and corticosterone. Neuroendocrinology 65:53–63

    Article  CAS  PubMed  Google Scholar 

  52. Dunn AJ, Swiergiel AH (2005) Effects of interleukin-1 and endotoxin in the forced swim and tail suspension tests in mice. Pharmacol Biochem Behav 81:688–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brambilla D, Franciosi S, Opp MR, Imeri L (2007) Interleukin-1 inhibits firing of serotonergic neurons in the dorsal raphe nucleus and enhances GABAergic inhibitory post-synaptic potentials. Eur J Neurosci 26:1862–1869

    Article  CAS  PubMed  Google Scholar 

  54. Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22:797–803

    Article  CAS  PubMed  Google Scholar 

  55. Vezzani A, Moneta D, Conti M et al (2000) Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci USA 97:11534–11539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Crespel A, Coubes P, Rousset MC et al (2002) Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Res 952:159–169

    Article  CAS  PubMed  Google Scholar 

  57. Boer K, Jansen F, Nellist M et al (2008) Inflammatory processes in cortical tubers, and subependymal giant cell tumors of tuberous sclerosis complex. Epilepsy Res 78:7–21

    Article  CAS  PubMed  Google Scholar 

  58. Ravizza T, Boer K, Redeker S et al (2006) The IL-1β system in epilepsy-associated malformations of cortical development. Neurobiol Dis 24:128–143

    Article  CAS  PubMed  Google Scholar 

  59. Mazarati AM, Pineda E, Shin D, Tio D, Taylor AN, Sankar R (2010) Comorbidity between epilepsy and depression: role of hippocampal interleukin-1β. Neurobiol Dis 37:461–467

    Article  CAS  PubMed  Google Scholar 

  60. Pineda EA, Hensler JG, Sankar R, Shin D, Burke TF, Mazarati AM (2011) Plasticity of presynaptic and postsynaptic serotonin 1 A receptors in an animal model of epilepsy-associated depression. Neuropsychopharmacology 36:1305–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bockaert J, Marin P (2015) Neuroinflammatory mechanisms: mTOR in brain physiology and pathologies. Physiol Rev 95(4):1157–1187

    Article  CAS  PubMed  Google Scholar 

  62. Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA, Karolewicz B (2011) The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 35:1774–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. French JA, Lawson JA, Yapici Z, Ikeda H, Polster T, Nabbout R et al. (2016) Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388:2153–2163

    Article  Google Scholar 

  64. Evans DL, Charney D (2003) Mood disorders and medical illness: a major public health problem. Biol Psychiatry 54:177–180

    Article  PubMed  Google Scholar 

  65. Salzberg M, Kumar G, Supit L, Jones NC, Morris MJ, Rees S et al (2007) Early postnatal stress confers enduring vulnerability to limbic epileptogenesis. Epilepsia 48:2079–2085

    Article  PubMed  Google Scholar 

  66. Jones NC, Kumar G, O’Brien TJ, MorrisMJ, Rees SM, Salzberg MR (2009) Anxiolytic effects of rapid amygdala kindling, and the influence of early life experience in rats. Behav Brain Res 12(203):81–87

    Article  Google Scholar 

  67. Karst H, de Kloet ER, Joëls M (1999) Episodic corticosterone treatment accelerates kindling epileptogenesis and triggers long-term changes in hippocampal CA1 cells, in the fully kindled state. Eur J Neurosci 11:889–898

    Article  CAS  PubMed  Google Scholar 

  68. Taher TR, Salzberg M, Morris MJ, Rees S, O’Brien TJ (2005) Chronic low-dose corticosterone supplementation enhances acquired epileptogenesis in the rat amygdala kindling model of TLE. Neuropsychopharmacology 30:1610–1616

    Article  CAS  PubMed  Google Scholar 

  69. Kumar G, Couper A, O’Brien TJ, Salzberg MR, Jones NC, ReesSM et al (2007) The acceleration of amygdala kindling epileptogenesis by chronic low-dose corticosterone involves both mineralocorticoid and glucocorticoid receptors. Psychoneuroendocrinology 32:834–842

    Article  CAS  PubMed  Google Scholar 

  70. Kumar G, Jones NC, Morris MJ, Rees S, O’Brien TJ, Salzberg MR (2011) Early life stress enhancement of limbic epileptogenesis in adult rats: mechanistic insights. PLoS ONE 6:e24033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Castro OW, Santos VR, Pun RY, McKlveen JM, Batie M, Holland KD et al (2012) Impact of corticosterone treatment on spontaneous seizure frequency and epileptiform activity in mice with chronic epilepsy. PLoS ONE 7(9):e46044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160:1516–1518

    Article  PubMed  Google Scholar 

  73. Sheline Y, Wang PW, Gado MH (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 93:3908–3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–118

    Article  CAS  PubMed  Google Scholar 

  75. Öngür D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 95:13290–13295

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rajkowska G, Miguel-Hidalgo JJ, Wei J (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45:1085–1098

    Article  CAS  PubMed  Google Scholar 

  77. Cotter DR, Pariante CM, Everall IP (2001) Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 55:585–595

    Article  CAS  PubMed  Google Scholar 

  78. Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP (2002) Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 12:386–394

    Article  PubMed  Google Scholar 

  79. Salgado PC, Yasuda CL, Cendes F (2010) Neuroimaging changes in mesial temporal lobe epilepsy are magnified in the presence of depression. Epilepsy Behav 19:422–427

    Article  PubMed  Google Scholar 

  80. Bilevicius E, Yasuda CL, Silva MS, Guerreiro CA, Lopes-Cendes I, Cendes F (2010) Antiepileptic drug response in temporal lobe epilepsy: a clinical and MRI morphometry study. Neurology 9(75):1695–1701

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres M. Kanner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanner, A.M. Can Neurochemical Changes of Mood Disorders Explain the Increase Risk of Epilepsy or its Worse Seizure Control?. Neurochem Res 42, 2071–2076 (2017). https://doi.org/10.1007/s11064-017-2331-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2331-8

Keywords

Navigation