Skip to main content
Log in

Spatial spiking neural network for classification of EEG signals for concealed information test

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In the field of neuroscience, a significant challenge lies in extracting essential features from biological signals like Electroencephalography (EEG). Utilized as a non-invasive method, EEG records brain activities through metal electrodes on the scalp. The analysis of EEG data finds applications in various domains, including concealed information tests, aimed at detecting deception. This paper introduces the Spatial Spiking Neural Network, a supervised approach for classifying EEG data collected during concealed information tests. Temporal EEG data undergoes filtration using a Finite Impulse Response (FIR) filter, while Common Spatial Pattern (CSP) is employed to extract spatial components. Binary classification is achieved through an integrate-and-fire neuron model, where the frequency of spike generation determines the classification. Spiking Neural Networks (SNNs) offers advantages in terms of temporal precision, event-driven processing, and low power consumption. Their spike-based communication allows for efficient handling of sparse data and recognition of temporal patterns, contributing to robustness and energy efficiency. The proposed model is applied separately to each subject’s EEG data, and the results are compared with traditional classification algorithms. The proposed approach attains a peak accuracy of 90.15%, showcasing superior performance compared to alternative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

Upon special request

Code availability

Upon special request

References

  1. Huang H, Xie Q, Pan J, He Y, Wen Z, Yu R, Li Y (2019) An eeg-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness. IEEE Transactions on Affective Computing

  2. Raza H, Rathee D, Zhou SM, Cecotti H, Prasad G (2019) Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related eeg-based brain-computer interface. Neurocomputing 343:154–166

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) Eegnet: a compact convolutional neural network for eeg-based brain-computer interfaces. J Neural Eng 15(5):056013

  4. Zhang Y, Zhou G, Jin J, Zhao Q, Wang X, Cichocki A (2015) Sparse bayesian classification of eeg for brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 27(11):2256–2267

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  5. Sovilj PM, Milovancev SS, Vujicic V (2011) Digital stochastic measurement of a nonstationary signal with an example of eeg signal measurement. IEEE Trans Instrum Meas 60(9):3230–3232

    Article  ADS  Google Scholar 

  6. Alchalabi AE, Shirmohammadi S, Eddin AN, Elsharnouby M (2018) Focus: detecting adhd patients by an eeg-based serious game. IEEE Trans Instrum Meas 67(7):1512–1520

  7. Mucarquer JA, Prado P, Escobar M, El-Deredy W, Zañartu M (2020) Improving eeg muscle artifact removal with an emg array. IEEE Trans Instrum Meas 69(3):815–824

    Article  ADS  PubMed  Google Scholar 

  8. Gao Z, Li S, Cai Q, Dang W, Yang Y, Mu C, Hui P (2019) Relative wavelet entropy complex network for improving eeg-based fatigue driving classification. IEEE Trans Instrum Meas 68(7):2491–2497

    Article  ADS  Google Scholar 

  9. Li Y, Zhang J, Cui W, Yuan H, Wei H (2020) A multiple beta wavelet-based locally regularized ultraorthogonal forward regression algorithm for time-varying system identification with applications to eeg. IEEE Trans Instrum Meas 69(3):916–928

    Article  ADS  Google Scholar 

  10. Farwell LA, Donchin E (1991) The truth will out: Interrogative polygraphy (“lie detection”) with event-related brain potentials. Psychophysiology 28(5):531–547

  11. Bablani A, Edla DR, Tripathi D, Cheruku R (2019) Survey on brain-computer interface: an emerging computational intelligence paradigm. ACM Comput Surv (CSUR) 52(1):1–32

  12. Rosenfeld JP, Soskins M, Bosh G, Ryan A (2004) Simple, effective countermeasures to p300-based tests of detection of concealed information. Psychophysiology 41(2):205–219

    Article  PubMed  Google Scholar 

  13. Rosenfeld JP, Labkovsky E, Winograd M, Lui MA, Vandenboom C, Chedid E (2008) The complex trial protocol (ctp): a new, countermeasure-resistant, accurate, p300-based method for detection of concealed information. Psychophysiology 45(6):906–919

  14. Kubo K, Nittono H (2009) The role of intention to conceal in the p300-based concealed information test. Appl Psychophysiol Biofeedback 34(3):227–235

    Article  PubMed  Google Scholar 

  15. Meixner JB, Rosenfeld JP (2011) A mock terrorism application of the p300-based concealed information test. Psychophysiology 48(2):149–154

    Article  PubMed  Google Scholar 

  16. Wang D, Miao D, Blohm G (2013) A new method for eeg-based concealed information test. IEEE Trans Inf Forensics Secur 8(3):520–527

    Article  CAS  Google Scholar 

  17. Akhavan A, Moradi MH, Vand SR (2017) Subject-based discriminative sparse representation model for detection of concealed information. Comput Methods Programs Biomed 143:25–33

    Article  PubMed  Google Scholar 

  18. Abootalebi V, Moradi MH, Khalilzadeh MA (2009) A new approach for eeg feature extraction in p300-based lie detection. Comput Methods Programs Biomed 94(1):48–57

    Article  PubMed  Google Scholar 

  19. Arasteh A, Moradi MH, Janghorbani A (2016) A novel method based on empirical mode decomposition for p300-based detection of deception. IEEE Trans. Inf. Forensics Secur 11(11):2584–2593

    Article  Google Scholar 

  20. Gao J, Lu L, Yang Y, Yu G, Na L, Rao N (2012) A novel concealed information test method based on independent component analysis and support vector machine. Clin EEG Neurosci 43(1):54–63

    Article  CAS  PubMed  Google Scholar 

  21. Farahani ED, Moradi MH (2017) Multimodal detection of concealed information using genetic-svm classifier with strict validation structure. Inform Med Unlocked

  22. Koles ZJ, Lazar MS, Zhou SZ (1990) Spatial patterns underlying population differences in the background eeg. Brain Topogr 2(4):275–284

    Article  CAS  PubMed  Google Scholar 

  23. Tomioka R, Dornhege G, Nolte G, Blankertz B, Aihara K, Müller KR (2006) Spectrally weighted common spatial pattern algorithm for single trial eeg classification. Dept. Math. Eng., Univ. Tokyo, Tokyo, Japan, Tech. Rep 40

  24. Samek W, Vidaurre C, Müller KR, Kawanabe M (2012) Stationary common spatial patterns for brain-computer interfacing. J Neural Eng 9(2):026013

    Article  PubMed  Google Scholar 

  25. Kang H, Nam Y, Choi S (2009) Composite common spatial pattern for subject-to-subject transfer. IEEE Signal Process Lett 16(8):683–686. https://doi.org/10.1109/LSP.2009.2022557

    Article  ADS  Google Scholar 

  26. Lu H, Plataniotis KN, Venetsanopoulos AN (2009) Regularized common spatial patterns with generic learning for eeg signal classification. In: Engineering in medicine and biology society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp 6599–6602. IEEE

  27. Lotte F, Guan C (2011) Regularizing common spatial patterns to improve bci designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58(2):355–362. https://doi.org/10.1109/TBME.2010.2082539

  28. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. Physiol J 117(4):500–544

    Article  CAS  Google Scholar 

  29. Abbott LF (1999) Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain research bulletin 50(5–6):303–304

  30. Koch C, Segev I (1998) Methods in Neuronal Modeling: from Ions to Networks. MIT press

  31. Izhikevich EM, FitzHugh R (2006) Fitzhugh-nagumo model. Scholarpedia 1(9):1349

  32. Kasabov N, Capecci E (2015) Spiking neural network methodology for modelling, classification and understanding of eeg spatio-temporal data measuring cognitive processes. Inf Sci 294:565–575

    Article  MathSciNet  Google Scholar 

  33. Kasabov N (2012) Neucube evospike architecture for spatio-temporal modelling and pattern recognition of brain signals. In: Iapr workshop on artificial neural networks in pattern recognition, pp 225–243. Springer

  34. Nuntalid N, Dhoble K, Kasabov N (2011) Eeg classification with bsa spike encoding algorithm and evolving probabilistic spiking neural network. In: International conference on neural information processing, pp 451–460. Springer

  35. Schrauwen B, Van Campenhout J (2003) Bsa, a fast and accurate spike train encoding scheme. In: Proceedings of the international joint conference on neural networks, 2003, vol 4, pp 2825–2830. IEEE

  36. Ghosh-Dastidar S, Adeli H (2009) A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Netw 22(10):1419–1431

    Article  PubMed  Google Scholar 

  37. Xu F, Pan D, Zheng H, Ouyang Y, Jia Z, Zeng H (2024) Eescn: a novel spiking neural network method for eeg-based emotion recognition. Comput Methods Programs Biomed 243:107927. https://doi.org/10.1016/j.cmpb.2023.107927

  38. Li W, Fang C, Zhu Z, Chen C, Song A (2024) Fractal spiking neural network scheme for eeg-based emotion recognition. IEEE J Transl Eng Health Med 12:106–118. https://doi.org/10.1109/JTEHM.2023.3320132

    Article  PubMed  Google Scholar 

  39. Gong P, Wang P, Zhou Y, Zhang D (2023) A spiking neural network with adaptive graph convolution and lstm for eeg-based brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 31:1440–1450. https://doi.org/10.1109/TNSRE.2023.3246989

    Article  Google Scholar 

  40. Sam A, Boostani R, Hashempour S, Taghavi M, Sanei S (2023) Depression identification using eeg signals via a hybrid of lstm and spiking neural networks. IEEE Trans Neural Syst Rehabil Eng 31:4725–4737. https://doi.org/10.1109/TNSRE.2023.3336467

    Article  CAS  PubMed  Google Scholar 

  41. Svojanovsky A. Brain Products. http://www.brainproducts.com/ Accessed 15 May 2017

  42. Svojanovsky A. Easycap. http://www.brainproducts.com/productdetails.php?id=20 Accessed 15 May 2017

  43. Maass W (1997) Networks of spiking neurons: the third generation of neural network models. Neural Netw 10(9):1659–1671

    Article  Google Scholar 

  44. Gerstner W (1995) Time structure of the activity in neural network models. Phys Rev E 51(1):738

    Article  ADS  MathSciNet  CAS  Google Scholar 

  45. Gerstner W, Sprekeler H, Deco G (2012) Theory and simulation in neuroscience. Science 338(6103):60–65

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Purves D, FD Augustine GJ (2001) Excitatory and Inhibitory Postsynaptic Potentials. Neuroscience. 2nd edition. Sunderland (MA). https://www.ncbi.nlm.nih.gov/books/NBK11117/

  47. Chandra B, Babu KN (2013) A new spiking neuron model. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp 1–5. IEEE

  48. Kumar S (2004) Neural Networks: a Classroom Approach. Tata McGraw-Hill Education

  49. The Mathworks, Inc.: MATLAB Version 9.0.0.321247 (R2016b). Natick, Massachusetts (2016). The Mathworks, Inc

  50. Delorme A, Makeig S (2004) Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  51. Bablani A, Edla DR, Tripathi D, Kuppili V (2019) An efficient concealed information test: eeg feature extraction and ensemble classification for lie identification. Mach Vis Appl 30:813–832

  52. Dodia S, Edla DR, Bablani A, Cheruku R (2020) Lie detection using extreme learning machine: a concealed information test based on short-time fourier transform and binary bat optimization using a novel fitness function. Comput Intell 36(2):637–658

  53. Bablani A, Edla DR, Tripathi D, Venkatanareshbabu K (2018) Subject based deceit identification using empirical mode decomposition. Procedia Comput Sci 132:32–39

    Article  Google Scholar 

  54. Bablani A, Edla DR, Dodia S (2018) Classification of eeg data using k-nearest neighbor approach for concealed information test. Procedia Comput Sci 143:242–249

    Article  Google Scholar 

  55. Bablani A, Edla DR, Kuppili V, Ramesh D (2020) A multi stage eeg data classification using k-means and feed forward neural network. Clin Epidemiol Glob Health 8(3):718–724

    Article  Google Scholar 

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

study conception and design: Damoder Reddy Edla and Dharavath Ramesh Implementation: Anushree Bablani and Ramalingaswamy Cheruku; draft manuscript preparation: Boddu Vijayasree and Saugat Battacharya. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Ramalingaswamy Cheruku.

Ethics declarations

Conflict of interest

Authors don’t have any conflict of interest with anyone

Ethics approval

Taken

Consent to participate

Taken

Consent for publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ramalingaswamy Cheruku and Vijayasree Boddu contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edla, D.R., Bablani, A., Bhattacharyya, S. et al. Spatial spiking neural network for classification of EEG signals for concealed information test. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-18698-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-18698-8

Keywords

Navigation