Skip to main content

Advertisement

Log in

Novel engineered HER2 specific recombinant protein nanocages for targeted drug delivery

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Protein nanocages resemble natural biomimetic carriers and can be engineered to act as targeted delivery systems, making them an attractive option for various drug delivery and biomedical applications. Our research investigated the genetic link of a specific anti-HER2 peptide (LTVSPWY) to the exposed N-terminal region of the maize (Zea mays) ferritin 1 (ZmFer1) protein nanocage, employing either a 7-amino acid (for LTVS-ZmFer1) or 16-amino acid (for LTVS-L-ZmFer1) linker. We utilized a heat treatment method to load the chemotherapeutic drug doxorubicin into the protein nanocage. The construct with the longer linker (LTVS-L) produced a greater amount of soluble protein nanocage and was selected for further experiments. The average size, polydispersity index, and zeta potential of the engineered protein nanocage were 19.01 nm, 0.168, and − 2.13 mV, respectively. The LTVS-L-ZmFer1 protein nanocage exhibited excellent thermal stability, withstanding temperatures up to 100 °C with only partial denaturation. Furthermore, we observed that cellular uptake of the LTVS-L-ZmFer1 protein nanocages in HER2-positive breast cancer cells was significantly higher compared to ZmFer1 after labeling with FITC (fluorescein isothiocyanate) (P-value = 0.0001). In addition, we observed a significant decrease in the viability of SKBR3 cells when treated with DOX-loaded LTVS-L-ZmFer1 protein nanocages compared to cells treated with DOX-loaded ZmFer1 protein nanocages. Therefore, this new treatment strategy may prove to be an effective way to reduce both the side effects and toxicity associated with conventional cancer treatments in patients with HER2-positive breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

BC:

breast cancer

HER2:

human epidermal growth factor receptor-2

PAGE:

polyacrylamide gel electrophoresis

CBB:

coomassie brilliant blue

DLS:

dynamic light scattering

cDNA:

complementary DNA

IPTG:

isopropyl β-D-1-thiogalactopyranoside

DOX:

doxorubicin

FITC:

fluorescein isothiocyanate

HFt:

human ferritin

ZmFer1:

Zea mays ferritin 1.

HCC:

hepatocellular carcinoma

ERP:

enhanced permeability and retention

PfTrx:

Pyrococcus furiosus thioredoxin

FTH1:

ferritin heavy chain 1

RBCs:

red blood cells

BSA:

bovine serum albumin

PBS:

phosphate buffered saline

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  2. Ahn S, Woo JW, Lee K, Park SY (2020) HER2 status in breast cancer: changes in guidelines and complicating factors for interpretation. J Pathol Translational Med 54(1):34–44

    Article  Google Scholar 

  3. Kavarthapu R, Anbazhagan R, Dufau ML (2021) Crosstalk between PRLR and EGFR/HER2 signaling pathways in breast Cancer. Cancers (Basel) 13(18):4685

    Article  CAS  PubMed  Google Scholar 

  4. Nitta H, Kelly BD, Allred C, Jewell S, Banks P et al (2016) The assessment of HER2 status in breast cancer: the past, the present, and the future. Pathol Int 66(6):313–324

    Article  PubMed  Google Scholar 

  5. Ahmadi M, Ahmadyousefi Y, Salimi Z, Mirzaei R, Najafi R et al (2022) Innovative diagnostic peptide-based technologies for cancer diagnosis: focus on EGFR‐targeting peptides. ChemMedChem

  6. Hunter FW, Barker HR, Lipert B, Rothé F, Gebhart G et al (2020) Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br J Cancer 122(5):603–612

    Article  CAS  PubMed  Google Scholar 

  7. Samadi P, Saki S, Dermani FK, Pourjafar M, Saidijam M (2018) Emerging ways to treat breast cancer: will promises be met? Cell Oncol 41(6):605–621

    Article  CAS  Google Scholar 

  8. Qi S-S, Sun J-H, Yu H-H, Yu S-Q (2017) Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Delivery 24(1):1909–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhaskar S, Lim S (2017) Engineering protein nanocages as carriers for biomedical applications. NPG Asia Mater 9(4):e371–e

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lv C, Zhang X, Liu Y, Zhang T, Chen H et al (2021) Redesign of protein nanocages: the way from 0D, 1D, 2D to 3D assembly. Chem Soc Rev 50(6):3957–3989

    Article  CAS  PubMed  Google Scholar 

  11. Dev S, Babitt JL (2017) Overview of iron metabolism in health and disease. Hemodial Int 21:S6–S20

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sana B, Johnson E, Lim S (2015) The unique self-assembly/disassembly property of Archaeoglobus fulgidus ferritin and its implications on molecular release from the protein cage. Biochimica et Biophysica Acta (BBA)-General subjects. 1850(12):2544–2551

  13. Yoo J, Park C, Yi G, Lee D, Koo H (2019) Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers (Basel) 11(5):640

    Article  CAS  PubMed  Google Scholar 

  14. Ardakani JB, Akhlaghi M, Nikkholgh B, Hosseinimehr SJ (2021) Targeting and imaging of HER2 overexpression tumor with a new peptide-based 68Ga-PET radiotracer. Bioorg Chem 106:104474

    Article  Google Scholar 

  15. Ahmadyousefi Y, Saidijam M, Amirheidari B, Rahbarizadeh F, Soleimani M (2022) A Novel Hyperthermostable recombinant protein nanocage. Iran Biomed J 26(6):428–442

    Google Scholar 

  16. Inoue I, Chiba M, Ito K, Okamatsu Y, Suga Y et al (2021) One-step construction of ferritin encapsulation drugs for cancer chemotherapy. Nanoscale 13(3):1875–1883

    Article  CAS  PubMed  Google Scholar 

  17. Hazrati F, Saidijam M, Ahmadyousefi Y, Nouri F, Ghadimipour H et al (2022) A novel chimeric protein with enhanced cytotoxic effects on breast cancer in vitro and in vivo. Proteins Struct Funct Bioinform 90(4):936–946

    Article  CAS  Google Scholar 

  18. Jie L-Y, Cai L-L, Wang L-J, Ying X-Y, Yu R-S et al (2012) Actively-targeted LTVSPWY peptide-modified magnetic nanoparticles for tumor imaging. Int J Nanomed. 3981–3989

  19. Cho E, Nam G-H, Hong Y, Kim YK, Kim D-H et al (2018) Comparison of exosomes and ferritin protein nanocages for the delivery of membrane protein therapeutics. J Controlled Release 279:326–335

    Article  CAS  Google Scholar 

  20. Tan X, Liu Y, Zang J, Zhang T, Zhao G (2021) Hyperthermostability of prawn ferritin nanocage facilitates its application as a robust nanovehicle for nutraceuticals. Int J Biol Macromol 191:152–160

    Article  CAS  PubMed  Google Scholar 

  21. Kuruppu AI, Zhang L, Collins H, Turyanska L, Thomas NR, Bradshaw TD (2015) An apoferritin-based drug delivery system for the tyrosine kinase inhibitor gefitinib. Adv Healthc Mater 4(18):2816–2821

    Article  CAS  PubMed  Google Scholar 

  22. Kim M, Rho Y, Jin KS, Ahn B, Jung S et al (2011) pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly. Biomacromolecules 12(5):1629–1640

    Article  CAS  PubMed  Google Scholar 

  23. Liang M, Fan K, Zhou M, Duan D, Zheng J et al (2014) H-ferritin–nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proceedings of the National Academy of Sciences. 111(41):14900-5

  24. Yin S, Liu Y, Dai S, Zhang B, Qu Y et al (2021) Mechanism study of Thermally Induced Anti-tumor Drug Loading to Engineered Human Heavy-Chain Ferritin Nanocages aided by computational analysis. Biosensors 11(11):444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang J, Cheng D, He J, Hong J, Yuan C, Liang M (2021) Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery. Nat Protoc 16(10):4878–4896

    Article  CAS  PubMed  Google Scholar 

  26. Li R, Ma Y, Dong Y, Zhao Z, You C et al (2019) Novel paclitaxel-loaded nanoparticles based on human H chain ferritin for tumor-targeted delivery. ACS Biomaterials Sci Eng 5(12):6645–6654

    Article  CAS  Google Scholar 

  27. Ren E, Chen H, Qin Z, Guan S, Jiang L et al (2022) Harnessing Bifunctional Ferritin with Kartogenin Loading for Mesenchymal Stem Cell capture and enhancing chondrogenesis in cartilage regeneration. Adv Healthc Mater 11(8):2101715

    Article  CAS  Google Scholar 

  28. Jiang B, Zhang R, Zhang J, Hou Y, Chen X et al (2019) GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy. Theranostics 9(8):2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong Y, Ma Y, Li X, Wang F, Zhang Y (2021) ERK-peptide-inhibitor-modified ferritin enhanced the therapeutic effects of paclitaxel in cancer cells and spheroids. Mol Pharm 18(9):3365–3377

    Article  CAS  PubMed  Google Scholar 

  30. Damiani V, Falvo E, Fracasso G, Federici L, Pitea M et al (2017) Therapeutic efficacy of the novel stimuli-sensitive nano-ferritins containing doxorubicin in a head and neck cancer model. Int J Mol Sci 18(7):1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo J, Xu N, Yao Y, Lin J, Li R, Li J-W (2017) Efficient expression of recombinant human heavy chain ferritin (FTH1) with modified peptides. Protein Exp Purif 131:101–108

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Vice-chancellor for Research and Technology, Hamadan University of Medical Sciences, Hamadan, Iran (Grant No. 140010148491).

Author information

Authors and Affiliations

Authors

Contributions

Javad Kheshti: Methodology, Data curation, Writing - original draft. Meysam Soleimani: Resources, Validation, Writing - review & editing, Supervision, Project administration, Funding acquisition. Mohammad Ahmadyousefi: Conceptualization, Methodology, Data curation, Investigation, Formal analysis, Visualization, Validation, Writing - original draft.

Corresponding author

Correspondence to Meysam Soleimani.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheshti, J., Ahmadyousefi, M. & Soleimani, M. Novel engineered HER2 specific recombinant protein nanocages for targeted drug delivery. Mol Biol Rep 51, 773 (2024). https://doi.org/10.1007/s11033-024-09636-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09636-w

Keywords

Navigation