Skip to main content
Log in

Radiopurity measurements of aluminum, copper and selenium materials for underground experiments and mass spectrometry development

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Natural thorium and uranium found in construction components of underground experiments can significantly contribute to detector background. Here we present the determination of 232Th and 238U in selected selenium, aluminum and copper materials, exploiting a highly effective chromatography method based on the TRU Resin and inductively coupled plasma mass spectrometry. While selenium samples as isotope sources were analyzed for the purpose of the SuperNEMO experiment, the results of aluminum and copper samples have been used for development of accelerator mass spectrometry for ultra-sensitive radiopurity analyses of construction materials. Semi-quantitative analysis was also conducted for some selenium and aluminum materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Angloher G et al (2014) EURECA conceptual design report. Phys Dark Universe 3:41–74

    Article  CAS  Google Scholar 

  2. Angloher G et al (2017) Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground: CRESST collaboration. Eur Phys J C 77:2–7

    Article  Google Scholar 

  3. Agostini M et al (2016) Search of neutrinoless double beta decay with the GERDA experiment. Nucl Part Phys Proc 273–275:1876–1882

    Article  Google Scholar 

  4. Arnold R et al (2010) Probing new physics models of neutrinoless double beta decay with SuperNEMO. Eur Phys J C 70:927–943

    Article  CAS  Google Scholar 

  5. Abgrall N et al (2014) The Majorana demonstrator neutrinoless double-beta decay experiment. Adv High Energy Phys 2014:1–18

    Article  Google Scholar 

  6. Abgrall N et al (2017) The large enriched germanium experiment for neutrinoless double beta decay (LEGEND). AIP Conf Proc 1894:020027

    Article  Google Scholar 

  7. Aprile E et al (2018) Dark matter search results from a one ton-year exposure of XENON1T. Phys Rev Lett 121:111302

    Article  CAS  Google Scholar 

  8. Nisi S, Copia L, Dafinei I, Di Vacri ML (2017) ICP-MS measurement of natural radioactivity at LNGS. Int J Mod Phys A 32:1743003

    Article  CAS  Google Scholar 

  9. L’Annunziata MF (2012) In: L’Annunziata MF (ed) Handbook of radioactivity analysis, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  10. Povinec PP (2017) Background constrains of the SuperNEMO experiment for neutrinoless double beta-decay searches. Nucl Instrum Methods Phys A 845:398–403

    Article  CAS  Google Scholar 

  11. Povinec PP (2018) Developments in radioanalytics: from Geiger counters to single atom counting. J Radioanal Nucl Chem 318:1573–1585

    Article  CAS  Google Scholar 

  12. Povinec PP (2018) New ultra-sensitive radioanalytical technologies for new science. J Radioanal Nucl Chem 316:893–931

    Article  CAS  Google Scholar 

  13. Povinec PP, Benedik L, Breier R, Ješkovský M, Kaizer J, Kameník J, Kochetov O, Kučera J, Loaiza P, Nisi S, Palušová V, Piquemal F (2018) Ultra-sensitive radioanalytical technologies for underground physics experiments. J Radioanal Nucl Chem 318:677–684

    Article  CAS  Google Scholar 

  14. Becker JS (2012) In: L’Annunziata MF (ed) Handbook of radioactivity analysis, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  15. Wieser ME, Schwieters JB (2005) The development of multiple collector mass spectrometry for isotope ratio measurements. Int J Mass Spectrom 242:97–115

    Article  CAS  Google Scholar 

  16. Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608:105–139

    Article  CAS  Google Scholar 

  17. Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination-an overview. Talanta 68:1047–1064

    Article  CAS  Google Scholar 

  18. LaFerriere BD, Maiti TC, Arnquist IJ, Hoppe EW (2015) A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry. Nucl Instrum Methods Phys A 775:93–98

    Article  CAS  Google Scholar 

  19. Grinberg P, Willie S, Sturgeon RE (2005) Determination of thorium and uranium in ultrapure lead by inductively coupled plasma mass spectrometry. Anal Chem 77:2432–2436

    Article  CAS  Google Scholar 

  20. Kaizer J, Dulanská S, Horváthová B, Ješkovský M, Povinec PP (2018) Development of separation procedures for determination of uranium and thorium in the 82Se source of the SuperNEMO experiment: first steps. J Radioanal Nucl Chem 318:2321–2327

    Article  CAS  Google Scholar 

  21. di Vacri ML, Nisi S, Balata M (2013) Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry. AIP Confe Proc 1549:66–69

    Article  Google Scholar 

  22. Stepaniuk M, Nisi S, Balata M (2015). In: Proceedings of Gran Sasso Summer Institute 2014 Hands-On Experimental Underground Physics at LNGS—PoS(GSSI14). Sissa Medialab, Trieste, Italy

  23. di Vacri ML, Nisi S, Cattadori C, Janicsko J, Lubashevskiy A, Smolnikov A, Walter M (2015) ICP MS selection of radiopure materials for the GERDA experiment. AIP Conf Proc 1672:150001

    Article  Google Scholar 

  24. Cardenas C, Burger A, DiVacri ML, Goodwin B, Groza M, Laubenstein M, Nagorny S, Nisi S, Rowe E (2017) Internal contamination of the Cs2HfCl6 crystal scintillator. Nucl Instrum Methods Phys A 872:23–27

    Article  CAS  Google Scholar 

  25. Aprile E et al (2017) Material radioassay and selection for the XENON1T dark matter experiment. Eur Phys J C 77:1–15

    Article  Google Scholar 

  26. Nisi S, Di Vacri A, Di Vacri ML, Stramenga A, Laubenstein M (2009) Comparison of inductively coupled mass spectrometry and ultra low-level gamma-ray spectroscopy for ultra low background material selection. Appl Radiat Isot 67:828–832

    Article  CAS  Google Scholar 

  27. Famulok N, Faestermann T, Fimiani L, Gómez-Guzmán JM, Hain K, Korschinek G, Ludwig P, Schönert S (2015) Ultrasensitive detection method for primordial nuclides in copper with Accelerator Mass Spectrometry. Nucl Instrum Methods Phys B 361:193–196

    Article  CAS  Google Scholar 

  28. Povinec PP, Masarik J, Ješkovský M, Kaizer J, Šivo A, Breier R, Pánik J, Staníček J, Richtáriková M, Zahoran M, Zeman J (2015) Development of the accelerator mass spectrometry technology at the Comenius University in Bratislava. Nucl Instrum Methods Phys B 361:87–94

    Article  CAS  Google Scholar 

  29. Horwitz EP, Chiarizia R, Dietz ML, Diamond H, Nelson DM (1993) Separation and preconcentration of actinides from acidic media by extraction chromatography. Anal Chim Acta 281:361–372

    Article  CAS  Google Scholar 

  30. Rakhimov AV et al (2019) Development of methods for the preparation of radiopure 82Se sources for the SuperNEMO neutrinoless double-beta decay experiment. Radiochim Acta. https://doi.org/10.1515/ract-2019-3129

    Article  Google Scholar 

  31. Dobson J, Saakyan, R (2017) SuperNEMO collaboration meeting, Prague, 26–28 June

Download references

Acknowledgements

We thank Dr. O. Kochetov (JINR Dubna) for providing Se samples. This work was supported by the Slovak Research and Development Agency (under the contract APVV-15-0576) and by the International Atomic Energy Agency (TC Project No. SLR/1001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Kaizer.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaizer, J., Nisi, S. & Povinec, P.P. Radiopurity measurements of aluminum, copper and selenium materials for underground experiments and mass spectrometry development. J Radioanal Nucl Chem 322, 1447–1454 (2019). https://doi.org/10.1007/s10967-019-06857-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06857-3

Keywords

Navigation