Skip to main content
Log in

Preliminary Design of Detector Assembly for DIXE

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Diffuse X-ray Explorer is a proposed X-ray spectroscopic survey experiment for the China Space Station. Its detector assembly contains the transition edge sensor (TES) microcalorimeter and readout electronics based on the superconducting quantum interference device (SQUID) on the cold stage. The cold stage is thermally connected to the ADR stage, and a Kevlar suspension is used to stabilize and isolate it from the 4 K environment. TES and SQUID are both sensitive to the magnetic field, so a hybrid shielding structure consisting of an outer Cryoperm shield and an inner niobium shield is used to attenuate the magnetic field. In addition, IR/optical/UV photons can produce shot noise and thus degrade the energy resolution of the TES microcalorimeter. A blocking filter assembly is designed to minimize the effects. In it, five filters are mounted at different temperature stages, reducing the probability of IR/optical/UV photons reaching the detector through multiple reflections between filters and absorption. This paper will describe the preliminary design of the detector assembly and its optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://www.matweb.com/index.aspx

  2. http://www.cryopermshielding.com/cryoperm-shielding.php.

References

  1. H. Jin, J. Mao, L. Chen, N. Chen, W. Cui, B. Gao, J. Li, X. Li, J. Liu, J. Quan, C. Jiang, G. Wang, L. Wang, Q. Wang, S. Wang, A. Xiao, S. Zhang, Q. Zhong, Diffuse X-ray explorer: a high-resolution X-ray spectroscopic sky surveyor on the China Space Station. J. Low Temp. Phys. 23, 1–2 (2024)

    Google Scholar 

  2. S. Wang, G. Wang, N. Chen, Y. Chen, W. Cui, J. Ding, F. Li, Y. Liang, Q. Wang, Y. Wang, Development of superconducting microcalorimeters for the hubs mission. Superconductivity 4, 100027 (2022). https://doi.org/10.1016/j.supcon.2022.100027

    Article  Google Scholar 

  3. G. Ventura, M. Barucci, E. Gottardi, Peroni I Low temperature thermal conductivity of Kevlar. Cryogenics 40(7), 489–491 (2000). https://doi.org/10.1016/S0011-2275(00)00062-X

    Article  ADS  Google Scholar 

  4. D. McCammon, R. Almy, E. Apodaca, W. Bergmann Tiest, W. Cui, S. Deiker, M. Galeazzi, M. Juda, A. Lesser, T. Mihara, J.P. Morgenthaler, W.T. Sanders, J. Zhang, E. Figueroa-Feliciano, R.L. Kelley, S.H. Moseley, R.F. Mushotzky, F.S. Porter, C.K. Stahle, A.E. Szymkowiak, A High spectral resolution observation of the soft X-Ray diffuse background with thermal detectors. ApJ 576(1), 188–203 (2002). https://doi.org/10.1086/341727arXiv:astro-ph/0205012 [astro-ph]

  5. R. Hijmering, P. Khosropanah, M. Ridder, J.R. Gao, M. Lindeman, H. Hoevers, J. van der Kuur, L. Gottardi, B. Jackson, R. Huiting, M. van Litsenburg, Effects of magnetic fields on highly sensitive TiAu TES bolometers. IEEE Trans. Appl. Supercond. 23(3), 2101505–2101505 (2013). https://doi.org/10.1109/TASC.2013.2255945

    Article  ADS  Google Scholar 

  6. C. Jiang, C. Li, H. Jin, W. Cui, Development of adiabatic demagnetization refrigerator for the HUBS mission. Sci. Bull. 68(22), 2709–2711 (2023). https://doi.org/10.1016/j.scib.2023.09.031

    Article  Google Scholar 

  7. R.A. Hijmering, R.H. den Hartog, A.J. van der Linden, M. Ridder, M.P. Bruijn, J. van der Kuur, B.J. van Leeuwen, P. van Winden, B. Jackson, The 160 TES bolometer read-out using FDM for SAFARI. In: W.S. Holland, J. Zmuidzinas (eds.) Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9153, p. 91531 (2014). https://doi.org/10.1117/12.2056510

  8. A. Bergen, H.J. van Weers, C. Bruineman, M.M.J. Dhallé, H.J.G. Krooshoop, H.J.M. ter Brake, K. Ravensberg, B.D. Jackson, C.K. Wafelbakker, Design and validation of a large-format transition edge sensor array magnetic shielding system for space application. Rev. Sci. Instruments 87(10), 105109 (2016). https://doi.org/10.1063/1.4962157

    Article  ADS  Google Scholar 

  9. D.K. Finnemore, T.F. Stromberg, C.A. Swenson, Superconducting properties of high-purity niobium. Phys. Rev. 149(1), 231–243 (1966). https://doi.org/10.1103/PhysRev.149.231

    Article  ADS  Google Scholar 

  10. D. McCammon, K. Barger, D.E. Brandl, R.P. Brekosky, S.G. Crowder, J.D. Gygax, R.L. Kelley, C.A. Kilbourne, M.A. Lindeman, F.S. Porter, L.E. Rocks, A.E. Szymkowiak, The X-ray quantum calorimeter sounding rocket experiment: improvements for the next flight. J. Low Temp. Phys. 151(3–4), 715–720 (2008). https://doi.org/10.1007/s10909-008-9734-5

    Article  ADS  Google Scholar 

  11. H.-J. Hagemann, W. Gudat, C. Kunz, Optical constants from the far infrared to the x-ray region: Mg, al, cu, ag, au, bi, c, and al 2 o 3. JOSA 65(6), 742–744 (1975)

    Article  ADS  Google Scholar 

  12. A. Cavadi, M.A. Artale, M. Barbera, A. Collura, F.R. Powell, S. Varisco, Measurement of optical constants n and k of lexan and polyimide. In: O.H. Siegmund , K.A. Flanagan (eds.) EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 3765, pp. 805–815 (1999). https://doi.org/10.1117/12.366568

  13. M.R. Querry , Optical Constants. Contractor Report, Sep. 1982–May 1984 Missouri Univ., Kansas City (1985)

  14. M. Barbera, G. Branduardi-Raymont, A. Collura, A. Comastri, J. Eder, T. Kamisiński, U. Lo Cicero, N. Meidinger, T. Mineo, S. Molendi, G. Parodi, A. Pilch, L. Piro, M. Rataj, G. Rauw, L. Sciortino, S. Sciortino, P. Wawer, The optical blocking filter for the ATHENA wide field imager: ongoing activities towards the conceptual design. In: O.H. Siegmund (ed.) UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIX. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9601, p. 960109 (2015). https://doi.org/10.1117/12.2189326

Download references

Acknowledgements

We wish to thank Dr. Dan McCammon and all members of the DIXE collaboration team for useful discussion. This work was supported in part by the Ministry of Science and Technology of China through Grant 2022YFC2205100, by China National Space Administration (CNSA) through a technology development grant, and by the National Natural Science Foundation of China through Grants 11927805, 12203027, 11803014, and 12220101004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, S., Jin, H. et al. Preliminary Design of Detector Assembly for DIXE. J Low Temp Phys (2024). https://doi.org/10.1007/s10909-024-03131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-024-03131-z

Keywords

Navigation