Skip to main content
Log in

On-Sky Performance of the SPT-3G Frequency-Domain Multiplexed Readout

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Frequency-domain multiplexing (fMux) is an established technique for the readout of large arrays of transition-edge sensor (TES) bolometers. Each TES in a multiplexing module has a unique AC voltage bias that is selected by a resonant filter. This scheme enables the operation and readout of multiple bolometers on a single pair of wires, reducing thermal loading onto sub-Kelvin stages. The current receiver on the South Pole Telescope, SPT-3G, uses a 68x fMux system to operate its large-format camera of \(\sim \)16,000 TES bolometers. We present here the successful implementation and performance of the SPT-3G readout as measured on-sky. Characterization of the noise reveals a median pair-differenced 1/f knee frequency of 33 mHz, indicating that low-frequency noise in the readout will not limit SPT-3G’s measurements of sky power on large angular scales. Measurements also show that the median readout white noise level in each of the SPT-3G observing bands is below the expectation for photon noise, demonstrating that SPT-3G is operating in the photon-noise-dominated regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.A.J. de Korte et al., Rev. Sci. Instrum. 74(8), 3807–3815 (2003). https://doi.org/10.1063/1.1593809

    Article  ADS  Google Scholar 

  2. E.S. Battistelli et al., J. Low Temp. Phys. 151(3–4), 908–914 (2008). https://doi.org/10.1007/s10909-008-9772-z

    Article  ADS  Google Scholar 

  3. M.A. Dobbs et al., Rev. Sci. Instrum. 83(7), 073113 (2012). https://doi.org/10.1063/1.4737629

    Article  ADS  Google Scholar 

  4. L. Gottardi et al., Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 824, 622–625 (2016). https://doi.org/10.1016/j.nima.2015.09.072

    Article  ADS  Google Scholar 

  5. B. Dober et al., App. Phys. Lett. 111(24), 243510 (2017). https://doi.org/10.1063/1.5008527

    Article  ADS  Google Scholar 

  6. G.M. Stiehl et al., App. Phys. Lett. 100(7), 072601 (2012). https://doi.org/10.1063/1.3684807

    Article  ADS  Google Scholar 

  7. P.A.R. Ade et al., ApJ 812(2), 176 (2015). https://doi.org/10.1088/0004-637x/812/2/176

    Article  ADS  Google Scholar 

  8. S.W. Henderson et al., J. Low Temp. Phys. 184(3–4), 772–779 (2016). https://doi.org/10.1007/s10909-016-1575-z

    Article  ADS  Google Scholar 

  9. A. Suzuki et al., J. Low Temp. Phys. 184(3–4), 805 (2016). https://doi.org/10.1007/s10909-015-1425-4

    Article  ADS  Google Scholar 

  10. A.N. Bender et al., Proc. SPIE 10708, 1070803 (2018). https://doi.org/10.1117/12.2312426

    Article  Google Scholar 

  11. N. Galitzki et al., Proc. SPIE 10708, 1070804 (2018). https://doi.org/10.1117/12.2312985

    Article  Google Scholar 

  12. A.J. Anderson et al., J. Low Temp. Phys. 193(5–6), 1057–1065 (2018). https://doi.org/10.1007/s10909-018-2007-z

    Article  ADS  Google Scholar 

  13. T. de Haan et al., Proc. SPIE 8452, 84520E (2012). https://doi.org/10.1117/12.925658

    Article  Google Scholar 

  14. K. Hattori et al., Proc. SPIE 9153, 91531B (2014). https://doi.org/10.1117/12.2057045

    Article  Google Scholar 

  15. K. Rotermund et al., J. Low Temp. Phys. 184, 486–491 (2016). https://doi.org/10.1007/s10909-016-1554-4

    Article  ADS  Google Scholar 

  16. A.N. Bender et al., Proc. SPIE 9914, 99141D (2016). https://doi.org/10.1117/12.2232146

    Article  Google Scholar 

  17. J.S. Avva et al., J. Low Temp. Phys. 193(3), 547–555 (2018). https://doi.org/10.1007/s10909-018-1965-5

    Article  ADS  Google Scholar 

  18. A.N. Bender et al., Proc. SPIE 9153, 91531A (2014). https://doi.org/10.1117/12.2054949

    Article  Google Scholar 

  19. K. Bandura et al., J. Astron. Instrum. 5(4), 1641005 (2016). https://doi.org/10.1142/S2251171716410051

    Article  Google Scholar 

  20. A.T. Crites et al., ApJ 805(1), 36 (2015). https://doi.org/10.1088/0004-637x/805/1/36

    Article  ADS  Google Scholar 

  21. R. Keisler et al., ApJ (2015). https://doi.org/10.1088/0004-637X/807/2/151

    Article  Google Scholar 

  22. M. Kamionkowski et al., Ann. Rev. Astron. Astrophys. 54(1), 227–269 (2016). https://doi.org/10.1146/annurev-astro-081915-023433

    Article  ADS  Google Scholar 

  23. R.S. Bussmann et al., ApJ 622(2), 1343–1355 (2005). https://doi.org/10.1086/427935

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The South Pole Telescope program is supported by the National Science Foundation (NSF) through Grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center Grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation through Grant GBMF#947 to the University of Chicago. Work at Argonne National Laboratory is supported by UChicago Argonne LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under contract no. DE-AC02-06CH11357. We acknowledge R. Divan, L. Stan, C.S. Miller, and V. Kutepova for supporting our work in the Argonne Center for Nanoscale Materials. Work at Fermi National Accelerator Laboratory, a DOE-OS, HEP User Facility managed by the Fermi Research Alliance, LLC, was supported under Contract No. DE-AC02-07CH11359. NWH acknowledges support from NSF CAREER Grant AST-0956135. The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and the Fonds de recherche du Québec Nature et technologies. JV acknowledges support from the Sloan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Bender.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bender, A.N., Anderson, A.J., Avva, J.S. et al. On-Sky Performance of the SPT-3G Frequency-Domain Multiplexed Readout. J Low Temp Phys 199, 182–191 (2020). https://doi.org/10.1007/s10909-019-02280-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02280-w

Keywords

Navigation