Skip to main content
Log in

A four-dimensional \(\Lambda \)CDM-type cosmological model induced from higher dimensions using a kinematical constraint

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A class of cosmological solutions of higher dimensional Einstein field equations with the energy-momentum tensor of a homogeneous, isotropic fluid as the source are considered with an anisotropic metric that includes the direct sum of a 3-dimensional (physical, flat) external space metric and an \(n\)-dimensional (compact, flat) internal space metric. A simple kinematical constraint is postulated that correlates the expansion rates of the external and internal spaces in terms of a real parameter \(\lambda \). A specific solution for which both the external and internal spaces expand at different rates is given analytically for \(n=3\). Assuming that the internal dimensions were at Planck length scales when the external space starts with a Big Bang (\(t=0\)), they expand only 1.49 times and stay at Planck length scales even in the present age of the universe (13.7 Gyr). The effective four dimensional universe would exhibit a behavior consistent with our current understanding of the observed universe. It would start in a stiff fluid dominated phase and evolve through radiation dominated and pressureless matter dominated phases, eventually going into a de Sitter phase at late times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We would like to note that kinematics similar to that we obtained for the external space for \(\lambda \ne 0\) is also noted by Capozziello et al. [17], although with a totally different reasoning in the context of conventional, four dimensional relativistic cosmology.

  2. Stiff fluid is the most promising EoS of matter at ultra-high densities for representing the very early universe (see [15, 16]) and is described with an EoS parameter \(p/\rho =1\), where \(\rho \) and \(p\) are the energy density and pressure, respectively.

  3. If \(c_{1}c_{2}>0\), in the case \(c_{1}\ne c_{2}\) the evolution of the Hubble and deceleration parameters turn out to be exactly the same with the ones in the case \(c_{1}=c_{2}\), but shifted along the time axis.

References

  1. Overduin, J.M., Wesson, P.S.: Kaluza–Klein gravity. Phys. Rep. 283, 303–378 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  2. Lidsey, J.E., Wands, D., Copeland, E.J.: Superstring cosmology. Phys. Rep. 337, 343–492 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  3. Chodos, A., Detweiler, S.: Where has the fifth dimension gone? Phys. Rev. D 21, 2167 (1980)

    Article  ADS  Google Scholar 

  4. Freund, P.G.O.: Kaluza Klein cosmologies. Nucl. Phys. B 209, 146–156 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  5. Dereli, T., Tucker, R.W.: Dynamical reduction of internal dimensions in the early universe. Phys. Lett. B 125, 133–135 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bringmann, T., Eriksson, M., Gustafsson, M.: Cosmological evolution of homogeneous universal extra dimensions. Phys. Rev. D 68, 063516 (2003)

    Article  ADS  Google Scholar 

  7. Grøn, Ø., Hervik, S.: Einstein’s General Theory of Relativity: With Modern Applications in Cosmology. Springer, New York (2007)

    Book  Google Scholar 

  8. Carroll, S.M., Press, W.H., Turner, E.L.: The cosmological constant. Ann. Rev. Astron. Astrophys. 30, 499–542 (1992)

    Article  ADS  Google Scholar 

  9. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Modern Phys. D 15, 1753–1936 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Alam, U., Sahni, V., Saini, T.D., Starobinsky, A.A.: Exploring the expanding Universe and dark energy using the statefinder diagnostic. Monthly Notices R. Astronom. Soc. 344, 1057–1074 (2003)

    Article  ADS  Google Scholar 

  11. Rapetti, D., Allen, S.W., Amin, M.A., Blandford, R.D.: A kinematical approach to dark energy studies. Monthly Notices R. Astronom. Soc. 375, 1510–1520 (2007)

    Article  ADS  Google Scholar 

  12. Gong, Y., Wang, A.: Reconstruction of the deceleration parameter and the equation of state of dark energy. Phys. Rev. D 75, 043520 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  13. Cai, R.G., Tuo, Z.L.: Detecting the cosmic acceleration with current data. Phys. Lett. B 706, 116–122 (2011)

    Article  ADS  Google Scholar 

  14. Capozziello, S., Lazkoz, R., Salzano, V.: Comprehensive cosmographic analysis by Markov chain method. Phys. Rev. D 84, 124061 (2011)

    Article  ADS  Google Scholar 

  15. Zeldovich, Y.B.: The equation of state at ultrahigh densities and its relativistic limitations. Sov. Phys. JETP 14, 1143 (1962)

    Google Scholar 

  16. Barrow, J.D.: Quiescent cosmology. Nature 272, 211–215 (1978)

    Article  ADS  Google Scholar 

  17. Capozziello, S., de Ritis, R., Marino, A.A.: A time-dependent cosmological constant phenomenology. Nuovo Cimento B 112, 1351–1359 (1997)

    ADS  Google Scholar 

  18. Cunha, J.V.: Kinematic constraints to the transition redshift from SNe Ia union data. Phys. Rev. D 79, 047301 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  19. Avgoustidis, A., Verde, L., Jimenez, R.: Consistency among distance measurements: transparency, BAO scale and accelerated expansion. J. Cosmol. Astropart. Phys. 06, 012 (2009)

    Article  ADS  Google Scholar 

  20. Komatsu, E., et al.: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011)

    Article  ADS  Google Scholar 

  21. Sahni, V., Saini, T.D., Starobinsky, A.A., Alam, U.: Statefinder—a new geometrical diagnostic of dark energy. J. Exp. Theor. Phys. Lett. 77, 201–206 (2003)

    Article  Google Scholar 

  22. Blandford, R.D.: Measuring and modeling the universe: a theoretical perspective. In: Freedman, W.L. (ed.) Carnegie Observatories Astrophysics Series, Vol. 2: Measuring and Modeling the Universe, pp. 377–388. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  23. Visser, M.: Jerk, snap and the cosmological equation of state. Classical Quantum Gravity 21, 2603–2615 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Dunajski, M., Gibbons, G.: Cosmic Jerk, snap and beyond. Classical Quantum Gravity 25, 235012 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  25. Demianski, M., de Ritis, R., Rubano, C., Scudellaro, P.: Scalar fields and anisotropy in cosmological models. Phys. Rev. D 46, 1391–1398 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  26. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59, 086004 (1999)

    Article  ADS  Google Scholar 

  27. Uzan, J.-P.: Varying Constants. Gravit. Cosmol. Living Rev. Relativ. 14, 2 (2011)

    ADS  Google Scholar 

Download references

Acknowledgments

Özgür Akarsu and Tekin Dereli appreciate the financial support given by the Turkish Academy of Sciences (TÜBA). Ö. Akarsu acknowledges also the financial support he is receiving from Koç University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür Akarsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akarsu, Ö., Dereli, T. A four-dimensional \(\Lambda \)CDM-type cosmological model induced from higher dimensions using a kinematical constraint. Gen Relativ Gravit 45, 1211–1226 (2013). https://doi.org/10.1007/s10714-013-1521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1521-1

Keywords

Navigation