Skip to main content
Log in

Simulation studies for the first pathfinder of the CATCH space mission

  • Research
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The Chasing All Transients Constellation Hunters (CATCH) space mission is an intelligent constellation consisting of 126 micro-satellites in three types (A, B, and C), designed for X-ray observation with the objective of studying the dynamic universe. Currently, we are actively developing the first Pathfinder (CATCH-1) for the CATCH mission, specifically for type-A satellites. CATCH-1 is equipped with Micro Pore Optics (MPO) and a 4-pixel Silicon Drift Detector (SDD) array. To assess its scientific performance, including the effective area of the optical system, on-orbit background, and telescope sensitivity, we employ the Monte Carlo software Geant4 for simulation in this study. The MPO optics exhibit an effective area of 41 cm\(^2\) at the focal spot for 1 keV X-rays, while the entire telescope system achieves an effective area of 29 cm\(^2\) at 1 keV when taking into account the SDD detector’s detection efficiency. The primary contribution to the background is found to be from the Cosmic X-ray Background. Assuming a 625 km orbit with an inclination of \(29^\circ \), the total background for CATCH-1 is estimated to be \(8.13\times 10^{-2}\) counts s\(^{-1}\) in the energy range of 0.5–4 keV. Based on the background within the central detector and assuming a Crab-like source spectrum, the estimated ideal sensitivity could achieve \(1.9\times 10^{-12}\) erg cm\(^{-2}\) s\(^{-1}\) for an exposure of 10\(^4\) s in the energy band of 0.5–4 keV. Furthermore, after simulating the background caused by low-energy charged particles near the geomagnetic equator, we have determined that there is no need to install a magnetic deflector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Li, P., Yin, Q.-Q., Li, Z., Tao, L., Wen, X., Zhang, S.-N., Qi, L., Zhang, J., Zhao, D., Li, D., et al.: Catch: chasing all transients constellation hunters space mission. Experimental Astronomy 55(2), 447–486 (2023)

    Article  ADS  Google Scholar 

  2. Agostinelli, S., Allison, J., Amako, K.a., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., et al.: Geant4—a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506( 3), 250–303 (2003)

  3. Allison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, P.A., Asai, M., Barrand, G., Capra, R., Chauvie, S., Chytracek, R., et al.: Geant4 developments and applications. IEEE Transactions on nuclear science 53(1), 270–278 (2006)

    Article  ADS  Google Scholar 

  4. Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., Bagli, E., Bagulya, A., Banerjee, S., Barrand, G., et al.: Recent developments in geant4. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment 835, 186–225 (2016)

    Article  CAS  ADS  Google Scholar 

  5. Pagani, C., Morris, D., Racusin, J., Grupe, D., Vetere, L., Stroh, M., Falcone, A., Kennea, J., Burrows, D., Nousek, J., et al.: Characterization and evolution of the swift x-ray telescope instrumental background. In: UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XV, vol. 6686, pp. 80–88 (2007). SPIE

  6. Fioretti, V., Bulgarelli, A., Malaguti, G., Spiga, D., Tiengo, A.: Monte carlo simulations of soft proton flares: testing the physics with xmm-newton. In: Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, vol. 9905, pp. 1991–2004 (2016). SPIE

  7. Xie, F., Zhang, J., Song, L.-M., Xiong, S.-L., Guan, J.: Simulation of the in-flight background for hxmt/he. Astrophysics and Space Science 360, 1–7 (2015)

    Article  Google Scholar 

  8. Zhang, J., Li, X., Ge, M., Zhao, H., Tuo, Y., Xie, F., Li, G., Zheng, S., Nie, J., Song, L., et al.: Comparison of simulated backgrounds with in-orbit observations for he, me, and le onboard insight-hxmt. Astrophysics and Space Science 365(9), 158 (2020)

    Article  ADS  Google Scholar 

  9. Zhao, D., Zhang, C., Ling, Z., Qiu, Y., Yuan, W., Zhang, S.: Background simulations of wxt aboard the einstein probe mission. In: Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, vol. 10699, pp. 1376–1382 (2018). SPIE

  10. Zhang, J., Qi, L., Yang, Y., Wang, J., Liu, Y., Cui, W., Zhao, D., Jia, S., Li, T., Chen, T., et al.: Estimate of the background and sensitivity of the follow-up x-ray telescope onboard einstein probe. Astroparticle Physics 137, 102668 (2022)

    Article  Google Scholar 

  11. Angel, J.: Lobster eyes as x-ray telescopes. In: Space Optics Imaging X-Ray Optics Workshop, vol. 184, pp. 84–85 (1979). SPIE

  12. Weimin, Y., Chen, Z., Richard, W., et al.: Exploring the dynamic x-ray universe: Scientific opportunities for the einstein probe mission. Chinese Journal of Space Science 36(2), 117–138 (2016)

    Article  Google Scholar 

  13. Gotz, D., Adami, C., Basa, S., Beckmann, V., Burwitz, V., Chipaux, R., Cordier, B., Evans, P., Godet, O., Goosmann, R., et al.: The microchannel x-ray telescope on board the svom satellite. Proceedings of Swift: 10 Years of Discovery (SWIFT 10, 74 (2014)

  14. ESA (2020) SMILE mission description. https://www.cosmos.esa.int/web/smile/mission

  15. Hudec, R., Feldman, C.: Lobster eye x-ray optics. Handbook of X-ray and Gamma-ray Astrophysics. Edited by Cosimo Bambi and Andrea Santangelo, 45 (2022)

  16. Giacconi, R., Rosati, P., Tozzi, P., Nonino, M., Hasinger, G., Norman, C., Bergeron, J., Borgani, S., Gilli, R., Gilmozzi, R., et al.: First results from the x-ray and optical survey of the chandra deep field south. The Astrophysical Journal 551(2), 624 (2001)

    Article  ADS  Google Scholar 

  17. Gehrels, N.: Instrumental background in gamma-ray spectrometers flown in low earth orbit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 313(3), 513–528 (1992)

    Article  ADS  Google Scholar 

  18. Campana, R., Feroci, M., Del Monte, E., Mineo, T., Lund, N., Fraser, G.W.: Background simulations for the large area detector onboard loft. Experimental Astronomy 36, 451–477 (2013)

    Article  ADS  Google Scholar 

  19. Armstrong, T., Colborn, B.: Predictions of induced radioactivity for spacecraft in low earth orbit. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks Radiation Measure. 20( 1), 101–130 (1992)

  20. Fioretti, V., Bulgarelli, A., Malaguti, G., Bianchin, V., Trifoglio, M., Gianotti, F.: The low earth orbit radiation environment and its impact on the prompt background of hard x-ray focusing telescopes. In: High Energy, Optical, and Infrared Detectors for Astronomy V, vol. 8453, pp. 833–848 (2012). SPIE

  21. Mizuno, T., Kamae, T., Godfrey, G., Handa, T., Thompson, D., Lauben, D., Fukazawa, Y., Ozaki, M.: Cosmic-ray background flux model based on a gamma-ray large area space telescope balloon flight engineering model. The Astrophysical Journal 614(2), 1113 (2004)

    Article  ADS  Google Scholar 

  22. Basini, G., Bongiorno, B., Brunetti, M., Codino, A., Golden, R., Grimani, C., Kimbell, B., Menichelli, M., Morselli, A., Ormes, J., et al.: Observations of cosmic ray electrons and positrons using an imaging calorimeter. In: Proceedings of the 22nd International Cosmic Ray Conference. 11-23 August, 1991. Dublin, Ireland. Under the Auspices of the International Union of Pure and Applied Physics (IUPAP), Volume 2, Contributed Papers, OG Sessions 6-11. Dublin: The Institute for Advanced Studies, 1991., P. 137, vol. 2, p. 137 (1991)

  23. Gleeson, L., Axford, W.: Solar modulation of galactic cosmic rays. Astrophys J 154, 1011 154, 1011 (1968)

  24. Smart, D., Shea, M.: A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft. Advances in Space Research 36(10), 2012–2020 (2005)

    Article  ADS  Google Scholar 

  25. Aguilar, M., Cavasonza, L.A., Ambrosi, G., Arruda, L., Attig, N., Azzarello, P., Bachlechner, A., Barao, F., Barrau, A., Barrin, L., et al.: Towards understanding the origin of cosmic-ray positrons. Physical review letters 122(4), 041102 (2019)

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Moritz, J.: Energetic protons at low equatorial altitudes(energetic protons detection below radiation belt at equatorial latitudes from azur satellite measurements, hypothesizing exospheric and upper atmospheric charge exchange processes). Zeitschrift fuer Geophysik 38, 701–717 (1972)

    CAS  ADS  Google Scholar 

  27. Petrov, A., Grigoryan, O., Panasyuk, M.: Energy spectrum of proton flux near geomagnetic equator at low altitudes. Advances in Space Research 41(8), 1269–1273 (2008)

    Article  CAS  ADS  Google Scholar 

  28. Petrov, A.N., Grigoryan, O.R., Kuznetsov, N.V.: Creation of model of quasi-trapped proton fluxes below earth’s radiation belt. Advances in Space Research 43(4), 654–658 (2009)

    Article  CAS  ADS  Google Scholar 

  29. Grigoryan, O., Panasyuk, M., Petrov, V., Sheveleva, V., Petrov, A.: Spectral characteristics of electron fluxes at \(L<2\) under the radiation belts. Advances in Space Research 42(9), 1523–1526 (2008)

    Article  CAS  ADS  Google Scholar 

  30. Qi, L., Li, G., Xu, Y., Zhang, J., Yang, Y., Sheng, L., Basso, S., Campana, R., Chen, Y., De Rosa, A., et al.: Geant4 simulation for the responses to x-rays and charged particles through the extp focusing mirrors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 963, 163702 (2020)

    Article  CAS  Google Scholar 

  31. Buis, E.-J., Vacanti, G.: X-ray tracing using geant4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 599(2–3), 260–263 (2009)

    Article  CAS  ADS  Google Scholar 

  32. Zhao, D., Zhang, C., Yuan, W., Zhang, S., Willingale, R., Ling, Z.: Geant4 simulations of a wide-angle x-ray focusing telescope. Experimental Astronomy 43, 267–283 (2017)

    Article  CAS  ADS  Google Scholar 

  33. Sarkar, R., Mandal, S., Debnath, D., Kotoch, T.B., Nandi, A., Rao, A., Chakrabarti, S.K.: Instruments of rt-2 experiment onboard coronas-photon and their test and evaluation iv: background simulations using geant-4 toolkit. Experimental Astronomy 29, 85–107 (2011)

    Article  ADS  Google Scholar 

  34. Castro, M., Braga, J., Penacchioni, A., D’Amico, F., Sacahui, R.: Background and imaging simulations for the hard x-ray camera of the mirax mission. Monthly Notices of the Royal Astronomical Society 459(4), 3917–3928 (2016)

    Article  CAS  ADS  Google Scholar 

  35. AP3.3 - MOXTEK, Inc. - Polymer X-Ray Window Datasheet. https://datasheets.globalspec.com/ds/moxtek/ap3-3/212f6f20-94d0-4f88-9853-b162778ed1fc

  36. Götz, D., Osborne, J., Cordier, B., Paul, J., Evans, P., Beardmore, A., Martindale, A., Willingale, R., O’Brien, P., Basa, S., et al.: The microchannel x-ray telescope for the gamma-ray burst mission svom. In: Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, vol. 9144, pp. 613–624 (2014). SPIE

  37. Vianello, G.: The significance of an excess in a counting experiment: Assessing the impact of systematic uncertainties and the case with a gaussian background. The Astrophysical Journal Supplement Series 236(1), 17 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  38. Arnaud, K.: Xspec: the first ten years. In: Astronomical Data Analysis Software and Systems V, ASP Conference Series, Vol. 101, 1996, George H. Jacoby and Jeannette Barnes, Eds., P. 17., vol. 101, p. 17 (1996)

  39. Xiao, J., Qi, L., Zhang, S.-N., Tao, L., Li, Z., Zhang, J., Wen, X., Yin, Q.-Q., Yang, Y., Bu, Q., Yang, S., Liu, X., Huang, Y., Chen, W., Yang, Y., Liu, H., Xu, Y., Zhao, S., Zhang, X., Li, P., Zhao, K., Ma, R., Zhao, Q., Tang, R., Rao, J., Li, Y.: In-orbit background simulation of a type-b catch satellite. Experimental Astronomy (2023)

  40. Swift: About Swift - XRT Instrument Description. https://swift.gsfc.nasa.gov/about_swift/xrt_desc.html

  41. Peterson, L.E.: Instrumental technique in x-ray astronomy. Annual review of astronomy and astrophysics 13(1), 423–509 (1975)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to all colleagues in the CATCH team for their contributions throughout this work. We are also grateful for the support provided by Tencent. Furthermore, we would like to extend our thanks to Stéphane Schanne and Bertrand Cordier for their insightful suggestions regarding the arrangement of our detectors. This work is supported by the National Natural Science Foundation of China (NSFC) under the Grant Nos. 12122306, 12003037 and 12173056, the Strategic Priority Research Program of the Chinese Academy of Sciences XDA15016400, the CAS Pioneer Hundred Talent Program Y8291130K2. We also acknowledge the Scientific and technological innovation project of IHEP E15456U2.

Funding

We acknowledge funding support from the National Natural Science Foundation of China (NSFC) under the Grant Nos. 12122306 and 12003037, the Strategic Priority Research Program of the Chinese Academy of Sciences XDA15016400, the CAS Pioneer Hundred Talent Program Y8291130K2, and the Scientific and technological innovation project of IHEP E15456U2.

Author information

Authors and Affiliations

Authors

Contributions

Yiming Huang and Juan Zhang wrote the main manuscript. Lian Tao and Jingyu Xiao assisted with the critical revision of the article. All authors reviewed the manuscript and contributed to the development of the simulation studies for CATCH-1.

Corresponding author

Correspondence to Juan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhang, J., Tao, L. et al. Simulation studies for the first pathfinder of the CATCH space mission. Exp Astron 57, 3 (2024). https://doi.org/10.1007/s10686-024-09924-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10686-024-09924-0

Keywords

Navigation