Skip to main content

Advertisement

Log in

Energy sensitivity of the GRAPES-3 EAS array for primary cosmic ray protons

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Low energy ground-based cosmic ray air shower experiments generally have energy threshold in the range of a few tens to a few hundreds of TeV. The shower observables are measured indirectly with an array of detectors. The atmospheric absorption of low energy secondaries limits their detection frequencies at the Earth’s surface. However, due to selection effects, a tiny fraction of low energy showers, which are produced in the lower atmosphere can reach the observational level. But, due to less information of shower observables, the reconstruction of these showers are arduous. Hence, it is believed that direct measurements by experiments aboard on satellites and balloon flights are more reliable at low energies. Despite having very small efficiency (\(\sim \)0.1%) at low energies, the large acceptance (\(\sim \)5m2sr) of GRAPES-3 experiment allows observing primary cosmic rays down below to \(\sim \)1TeV and opens up the possibility to measure primary energy spectrum spanning from a few TeV to beyond cosmic ray knee (up to 1016eV), covering five orders of magnitude. The GRAPES-3 energy threshold for primary protons through Monte Carlo simulations are calculated, which gives reasonably good agreement with data. Furthermore, the total efficiencies and acceptance are also calculated for protons primaries. The ability of GRAPES-3 experiment to cover such a broader energy range may provide a unique handle to bridge the energy spectrum between direct measurements at low energies and indirect measurements at ultra-high energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Casolino, M., et al.: Launch of the space experiment PAMELA. Adv. Space Res. 42(3), 455–466 (2008)

    Article  ADS  Google Scholar 

  2. Alpat, B.: Alpha Magnetic Spectrometer (AMS02) experiment on the International Space Station (ISS). Nucl. Sci. Tech. 14(3), 182–194 (2003)

    ADS  Google Scholar 

  3. Chang, J., et al.: The DArk Matter Particle Explorer mission. Astropart. Phys. 95, 6–24 (2017)

    Article  ADS  Google Scholar 

  4. Boezio, M., et al.: The Cosmic–Ray Proton and Helium Spectra measured with the CAPRICE98 balloon experiment. Astropart. Phys. 19, 583–604 (2003)

    Article  ADS  Google Scholar 

  5. Mitchell, J.W., et al.: The BESS program. Nuclear Phys B - Proc. Suppl. 134, 31–38 (2004)

    Article  ADS  Google Scholar 

  6. Seo, E.S., et al.: Cosmic-ray energetics and mass (CREAM) balloon project. Adv. Space. Res. 33, 1777–1785 (2004)

    Article  ADS  Google Scholar 

  7. Aielli, G., et al.: Highlights from the ARGO-YBJ experiment. Nucl. Inst. Methods Phys. Res. A 661, S50–S55 (2012)

    Article  ADS  Google Scholar 

  8. Amenomori, M., et al.: Cosmic-ray energy spectrum around the knee obtained by the Tibet experiment and future prospects. Adv. Space Res. 47(4), 629–639 (2011)

    Article  ADS  Google Scholar 

  9. Antoni, T., et al.: The cosmic ray experiment KASCADE. Nucl. Instrum. Methods A 513, 490–510 (2003)

    Article  ADS  Google Scholar 

  10. Navarra, G., et al.: KASCADE-Grande: A large acceptance, high-resolution cosmic-ray detector up to 1018ev. Nucl. Instrum. Meth. A518, 207–209 (2004)

    Article  ADS  Google Scholar 

  11. The Pierre Auger Collaboration: The pierre auger cosmic ray observatory. Nucl. Inst. Methods Phys. Res. A 798, 172–213 (2015)

    Article  ADS  Google Scholar 

  12. Abu-Zayyad, T., et al.: The surface detector array of the Telescope Array experiment. Nucl. Instrum. Meth. A689, 87–97 (2012)

    Article  ADS  Google Scholar 

  13. Menicucci, A., et al.: PAMELA: A matter-antimatter experiment in space. http://articles.adsabs.harvard.edu//full/2003foap.conf..675M/0000679.000.html2003foap.conf..675M

  14. Arruda, L., et al.: Particle identification with the AMS-02 RICH detector: D/p and D/p separation. arXiv:0801.3243

  15. Yoon, Y.S., et al.: Proton and helium spectra from the CREAM-III flight. Astrophys. J. 5(8pp), 839 (2017)

    Google Scholar 

  16. Gupta, S. K., et al.: GRAPES-3 A high-density air shower array for studies on the structure in the cosmic-ray energy spectrum near the knee. Nucl. Instrum. Methods A 540, 311 (2005)

    Article  ADS  Google Scholar 

  17. Chandra, A., et al.: Extending the range of particle densities observed by GRAPES-3. Proceedings of Science, PoS(ICRC2017)479

  18. Hayashi, Y., et al.: A large area muon tracking detector for ultra-high energy cosmic ray astrophysics - the GRAPES-3 experiment. Nucl. Instrum. Methods A 545, 643 (2005)

    Article  ADS  Google Scholar 

  19. Mohanty, P.K., et al.: Fast fourier transform to measure pressure coefficient of muons in the GRAPES- 3 experiment. Astropart. Phys. 79, 23–30 (2016)

    Article  ADS  Google Scholar 

  20. Arunbabu, K.P., et al.: Dependence of the muon intensity on the atmospheric temperature measured by the GRAPES-3 experiment. Astropart. Phys. 94, 22–28 (2017)

    Article  ADS  Google Scholar 

  21. Hariharan, B., et al.: Measurement of the electrical properties of a thundercloud through muon imaging by the GRAPES-3 experiment. Phys. Rev. Lett. 122, 105101 (2019)

    Article  ADS  Google Scholar 

  22. Mohanty, P.K., et al.: Transient weakening of Earth’s magnetic shield probed by a cosmic ray burst. Phys. Rev. Lett. 117, 171101 (2016)

    Article  Google Scholar 

  23. Mohanty, P.K., et al.: Was the cosmic ray burst detected by the GRAPES-3 muon telescope on 22 June 2015 caused by a transient weakening of the geomagnetic field or by an interplanetary anisotropy?. Phys. Rev. D 97, 082001 (2018)

    Article  Google Scholar 

  24. Gupta, S.K., et al.: Measurement of arrival time of particles in extensive air showers using TDC32. Experimental Astronomy. https://doi.org/10.1007/s10686-012-9320-3

  25. Jhansi, V.B., et al.: The angular resolution of GRAPES-3 EAS array after correction for the shower front curvature. arXiv:1911.04715

  26. Kamata, K., Nishimura, J.: The Lateral and the Angular Structure Functions of Electron Showers. Progress of Theoretical Physics Supplement, No. 6, pp 93–155. K. Greisen, Cosmic Ray Showers. Annual Review of Nuclear and Particle Science, vol 10, pp 63–108

  27. Tanaka, H., et al.: Studies of the energy spectrum and composition of the primary cosmic rays at 100-1000 TeV from the GRAPES-3 experiment. J. Phys. G: Nuclear Particle Phys. 39, 025201 (2012)

  28. Heck, D., Knapp, J., Capdevielle, J.N., Schatz, G., Thouw, T.: Report FZKA 6019, Forschungszentrum Karlsruhe; available from http://www-ik.fzk.de/corsika/physics_description/corsika_phys.html (1998)

  29. Pierog, T, et al.: arXiv:1306.0121[hep-ph] (2013)

  30. Kalmykov, N.N., Ostapchenko, S.S., Pavlov, A.I.: Nucl. Phys. B (Proc Suppl.) 52B, 17 (1997)

    Article  ADS  Google Scholar 

  31. Ostapchenko, S.S.: vol. D83 (2011)

  32. Engel, R., Gaisser, T.K., Lipari, P., Stanev, T.: Proc. 26th Int. Cosmic Ray Conf., Salt Lake City (USA) 1, 415. Ahn, E.-J., Engel, R., Gaisser, T.K., Lipari, P.: T. Stanev, Phys. Rev. D80, 094003 (2009) (1999)

  33. Werner, K.: Phys. Rep. 232, 87 (1993)

    Article  ADS  Google Scholar 

  34. Ranft, J.: vol. D51. arXiv:9911213 and arXiv:9911232 (1999) (1995)

  35. Drescher, H.J., Hladik, M., Ostapchenko, S., Pierog, T., Werner, K.: Phys. Rep. 350, 93 (2001). (preprint hep-ph/0007198 (2000))

    Article  ADS  Google Scholar 

  36. Fesefeldt, H.: Report PITHA-85/02, RWTH Aachen; available from: http://cds.cern.ch/record/162911/files/CM-P00055931.pdf (1985)

  37. Fassò, A., Ferrari, A., Roesler, S., Sala, P.R., Battistoni, G., Cerutti, F., Gadioli, E., Garzelli, M.V., Ballarini, F., Ottolenghi, O., Empl, A., Ranft, J.: The physics models of FLUKA: status and recent developments, Computing in High Energy and Nuclear Physics 2003 Conference (CHEP2003), La Jolla, 2003 (paper MOMT005); eConf C0303241; arXiv:0306267; http://www.fluka.org/references.html (2003)

  38. Bass, S.A., et al.: Prog. Part. Nucl. Phys. 41, 225 (1998). M. Bleicher et al., J. Phys. G: Nucl. Part. Phys. 25, 1859; http://urqmd.org/ (1999)

    Article  ADS  Google Scholar 

  39. Ivanchenko, V.N., et al.: Geant4 toolkit for simulation of HEP experiments. Nucl. Instrum. Meth. A502, 666–668 (2003)

    Article  ADS  Google Scholar 

  40. Varsi, F., et al.: Energy spectrum and composition measurements of cosmic rays from GRAPES-3 experiment. Proceedings of Science, PoS(ICRC2019)449

Download references

Acknowledgements

We thank D.B. Arjunan, A.S. Bosco, V. Jeyakumar, S. Kingston, N.K. Lokre, K. Manjunath, S. Murugapandian, S. Pandurangan, B. Rajesh, K. Ramadass, R. Ravi, V. Santhoshkumar, S. Sathyaraj, M.S. Shareef, C. Shobana, R. Sureshkumar, and other colleagues for their help in running and maintenance of the GRAPES-3 experiment. We thank the anonymous reviewer for the careful reading and recommendation for publishing our paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Hariharan or S. S. R. Inbanathan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariharan, B., Ahmad, S., Chakraborty, M. et al. Energy sensitivity of the GRAPES-3 EAS array for primary cosmic ray protons. Exp Astron 50, 185–198 (2020). https://doi.org/10.1007/s10686-020-09671-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-020-09671-y

Keywords

Navigation