Skip to main content
Log in

Chromogranins A and B as Regulators of Vesicle Cargo and Exocytosis

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

A Commentary to this article was published on 19 November 2010

Abstract

Chromogranins (Cgs) are acidic proteins that have been implicated in several physiological processes such as vesicle sorting, the production of bioactive peptides and the accumulation of soluble species inside large dense core vesicles (LDCV). They constitute the main protein component in the vesicular matrix of LDCV. This latter characteristic of Cgs accounts for the ability of vesicles to concentrate catecholamines and Ca2+. It is likely that Cgs are behind the delay in the neurotransmitter exit towards the extracellular milieu after vesicle fusion, due to their low affinity and high capacity to bind solutes present inside LDCV. The recent availability of mouse strains lacking Cgs, combined with the arrival of several techniques for the direct monitoring of exocytosis, have helped to expand our knowledge about the mechanisms used by granins to concentrate catecholamines and Ca2+ in LDCV, and how they affect the kinetics of exocytosis. We will discuss the roles of Cgs A and B in maintaining the intravesicular environment of secretory vesicles and in exocytosis, bringing together the most recent findings from adrenal chromaffin cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Cgs:

Chromogranins

CgA:

Chromogranin A

CgB:

Chromogranin B

LDCV:

Large dense core vesicles

SgII:

Secretogranin II

References

  • Albillos A, Dernick G, Horstmann H, Almers W, Alvarez de Toledo G, Lindau M (1997) The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389:509–512

    Article  CAS  PubMed  Google Scholar 

  • Ardiles AO, Maripillan J, Lagos VL, Toro R, Mora IG, Villarroel L, Ales E, Borges R, Cardenas AM (2006) A rapid exocytosis mode in chromaffin cells with a neuronal phenotype. J Neurochem 99:29–41

    Article  CAS  PubMed  Google Scholar 

  • Banks P, Helle K (1965) The release of protein from the stimulated adrenal medulla. Biochem J 97:40C–41C

    CAS  PubMed  Google Scholar 

  • Borges R, Machado JD, Alonso C, Brioso MA, Gomez JF (2000) Functional role of chromogranins. The intragranular matrix in the last phase of exocytosis. Adv Exp Med Biol 482:69–81

    Article  CAS  PubMed  Google Scholar 

  • Bulenda D, Gratzl M (1985) Matrix free Ca2+ in isolated chromaffin vesicles. Biochemistry 24:7760–7765

    Article  CAS  PubMed  Google Scholar 

  • Colliver TL, Pyott SJ, Achalabun M, Ewing AG (2000) VMAT-mediated changes in quantal size and vesicular volume. J Neurosci 20:5276–5282

    CAS  PubMed  Google Scholar 

  • Conlon JM (2010) Granin-derived peptides as diagnostic and prognostic markers for endocrine tumors. Regul Pept. doi:10.1016/j.regpep.2009.11.013

  • Courel M, Vasquez MS, Hook VY, Mahata SK, Taupenot L (2008) Sorting of the neuroendocrine secretory protein Secretogranin II into the regulated secretory pathway: role of N- and C-terminal alpha-helical domains. J Biol Chem 283:11807–11822

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vera J, Morales YG, Hernandez-Fernaud J, Camacho M, Montesinos MS, Calegari F, Huttner WB, Borges R, Machado JD (2010) Chromogranin B gene ablation reduces the catecholamine cargo and decelerates exocytosis in chromaffin secretory vesicles. J Neurosci 30:950–957

    Article  CAS  PubMed  Google Scholar 

  • Gerdes HH, Glombik MM (1999) Signal-mediated sorting to the regulated pathway of protein secretion. Ann Anat 181:447–453

    Article  CAS  PubMed  Google Scholar 

  • Gerdes HH, Glombik MM (2000) Signal-mediated sorting of chromogranins to secretory granules. Adv Exp Med Biol 482:41–54

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt G, Adams RN (1982) Determination of diffusion-coefficients by flow-injection analysis. Anal Chem 54:2618–2620

    Article  CAS  Google Scholar 

  • Glombik MM, Kromer A, Salm T, Huttner WB, Gerdes HH (1999) The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. EMBO J 18:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Gong LW, Hafez I, Alvarez de Toledo G, Lindau M (2003) Secretory vesicles membrane area is regulated in tandem with quantal size in chromaffin cells. J Neurosci 23:7917–7921

    CAS  PubMed  Google Scholar 

  • Gregorc V, Spreafico A, Floriani I, Colombo B, Ludovini V, Pistola L, Bellezza G, Vigano MG, Villa E, Corti A (2007) Prognostic value of circulating chromogranin A and soluble tumor necrosis factor receptors in advanced nonsmall cell lung cancer. Cancer 110:845–853

    Article  CAS  PubMed  Google Scholar 

  • Hafez I, Kisler K, Berberian K, Dernick G, Valero V, Yong MG, Craighead HG, Lindau M (2005) Electrochemical imaging of fusion pore openings by electrochemical detector arrays. Proc Natl Acad Sci USA 102:13879–13884

    Article  CAS  PubMed  Google Scholar 

  • Heinemann C, Chow RH, Neher E, Zucker RS (1994) Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophys J 67:2546–2557

    Article  CAS  PubMed  Google Scholar 

  • Helle KB (2010) Regulatory peptides from chromogranin A and secretogranin II: putative modulators of cells and tissues involved in inflammatory conditions. Regul Pept. doi:10.1016/j.regpep.2009.09.009

  • Helle KB, Reed RK, Pihl KE, Serck-Hanssen G (1985) Osmotic properties of the chromogranins and relation to osmotic pressure in catecholamine storage granules. Acta Physiol Scand 123:21–33

    Article  CAS  PubMed  Google Scholar 

  • Hendy GN, Li T, Girard M, Feldstein RC, Mulay S, Desjardins R, Day R, Karaplis AC, Tremblay ML, Canaff L (2006) Targeted ablation of the chromogranin a (Chga) gene: normal neuroendocrine dense-core secretory granules and increased expression of other granins. Mol Endocrinol 20:1935–1947

    Article  CAS  PubMed  Google Scholar 

  • Hillarp NA (1959) Further observations on the state of the catechol amines stored in the adrenal medullary granules. Acta Physiol Scand 47:271–279

    Article  CAS  PubMed  Google Scholar 

  • Huh YH, Jeon SH, Yoo SH (2003) Chromogranin B-induced secretory granule biogenesis: comparison with the similar role of chromogranin A. J Biol Chem 278:40581–40589

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Tao-Cheng JH, Eiden LE, Loh YP (2001) Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell 106:499–509

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Zhang CF, Sun Z, Wu H, Loh YP (2005) Chromogranin A deficiency in transgenic mice leads to aberrant chromaffin granule biogenesis. J Neurosci 25:6958–6961

    Article  CAS  PubMed  Google Scholar 

  • Koshimizu H, Kim T, Cawley NX, Loh YP (2010) Chromogranin A: a new proposal for trafficking, processing and induction of granule biogenesis. Regul Pept 160:153–159

    Article  CAS  PubMed  Google Scholar 

  • Kromer A, Glombik MM, Huttner WB, Gerdes HH (1998) Essential role of the disulfide-bonded loop of chromogranin B for sorting to secretory granules is revealed by expression of a deletion mutant in the absence of endogenous granin synthesis. J Cell Biol 140:1331–1346

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Hook V (2009) Proteolytic fragments of chromogranins A and B represent major soluble components of chromaffin granules, illustrated by two-dimensional proteomics with NH(2)-terminal Edman peptide sequencing and MALDI-TOF MS. Biochemistry 48:5254–5262

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra NR, O’Connor DT, Vaingankar SM, Hikim AP, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N, Kennedy BP, Ziegler MG, Ross J, Mahata SK (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 115:1942–1952

    Article  CAS  PubMed  Google Scholar 

  • Mahata SK, Marksteiner J, Sperk G, Mahata M, Gruber B, Fischer-Colbrie R, Winkler H (1992) Temporal lobe epilepsy of the rat: differential expression of mRNAs of chromogranin B, secretogranin II, synaptin/synaptophysin and p65 in subfield of the hippocampus. Brain Res Mol Brain Res 16:1–12

    Article  CAS  PubMed  Google Scholar 

  • Marksteiner J, Lechner T, Kaufmann WA, Gurka P, Humpel C, Nowakowski C, Maier H, Jellinger KA (2000) Distribution of chromogranin B-like immunoreactivity in the human hippocampus and its changes in Alzheimer’s disease. Acta Neuropathol 100:205–212

    Article  CAS  PubMed  Google Scholar 

  • Montero-Hadjadje M, Vaingankar S, Elias S, Tostivint H, Mahata SK, Anouar Y (2008) Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol (Oxf) 192:309–324

    Article  CAS  Google Scholar 

  • Montero-Hadjadje M, Elias S, Chevalier L, Benard M, Tanguy Y, Turquier V, Galas L, Yon L, Malagon MM, Driouich A, Gasman S, Anouar Y (2009) Chromogranin A promotes peptide hormone sorting to mobile granules in constitutively and regulated secreting cells: role of conserved N- and C-terminal peptides. J Biol Chem 284:12420–12431

    Article  CAS  PubMed  Google Scholar 

  • Montesinos MS, Machado JD, Camacho M, Diaz J, Morales YG, Alvarez de la Rosa D, Carmona E, Castaneyra A, Viveros OH, O’Connor DT, Mahata SK, Borges R (2008) The crucial role of chromogranins in storage and exocytosis revealed using chromaffin cells from chromogranin A null mouse. J Neurosci 28:3350–3358

    Article  CAS  PubMed  Google Scholar 

  • Munoz DG (1991) Chromogranin A-like immunoreactive neurites are major constituents of senile plaques. Lab Invest 64:826–832

    CAS  PubMed  Google Scholar 

  • Natori S, Huttner WB (1996) Chromogranin B (secretogranin I) promotes sorting to the regulated secretory pathway of processing intermediates derived from a peptide hormone precursor. Proc Natl Acad Sci USA 93:4431–4436

    Article  CAS  PubMed  Google Scholar 

  • Nishimura M, Tomimoto H, Suenaga T, Nakamura S, Namba Y, Ikeda K, Akiguchi I, Kimura J (1994) Synaptophysin and chromogranin A immunoreactivities of Lewy bodies in Parkinson’s disease brains. Brain Res 634:339–344

    Article  CAS  PubMed  Google Scholar 

  • O’Connor DT, Burton D, Deftos LJ (1983) Immunoreactive human chromogranin A in diverse polypeptide hormone producing human tumors and normal endocrine tissues. J Clin Endocrinol Metab 57:1084–1086

    Article  PubMed  Google Scholar 

  • Obermuller S, Calegari F, King A, Lindqvist A, Lundquist I, Salehi A, Francolini M, Rosa P, Rorsman P, Huttner WB, Barg S (2010) Defective secretion of islet hormones in chromogranin-B deficient mice. PLoS One 5:e8936

    Article  PubMed  Google Scholar 

  • Park HY, So SH, Lee WB, You SH, Yoo SH (2002) Purification, pH-dependent conformational change, aggregation, and secretory granule membrane binding property of secretogranin II (chromogranin C). Biochemistry 41:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Pihel K, Schroeder TJ, Wightman RM (1994) Rapid and selective cyclic voltammetric measurements of epinephrine and norepinephrine as a method to measure secretion from single bovine adrenal-medullary cells. Anal Chem 66:4532–4537

    Article  CAS  Google Scholar 

  • Schrott-Fischer A, Bitsche M, Humpel C, Walcher C, Maier H, Jellinger K, Rabl W, Glueckert R, Marksteiner J (2009) Chromogranin peptides in amyotrophic lateral sclerosis. Regul Pept 152:13–21

    Article  CAS  PubMed  Google Scholar 

  • Sombers LA, Maxson MM, Ewing AG (2007) Multicore vesicles: hyperosmolarity and l-DOPA induce homotypic fusion of dense core vesicles. Cell Mol Neurobiol 27:681–685

    Article  CAS  PubMed  Google Scholar 

  • Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin–secretogranin family. N Engl J Med 348:1134–1149

    Article  CAS  PubMed  Google Scholar 

  • Terland O, Flatmark T (1975) Ascorbate as a natural constituent of chromaffin granules from the bovine adrenal medulla. FEBS Lett 59:52–56

    Article  CAS  PubMed  Google Scholar 

  • Trifaro JM, Glavinovic M, Rose SD (1997) Secretory vesicle pools and rate and kinetics of single vesicle exocytosis in neurosecretory cells. Neurochem Res 22:831–841

    Article  CAS  PubMed  Google Scholar 

  • Videen JS, Mezger MS, Chang YM, O’Connor DT (1992) Calcium and catecholamine interactions with adrenal chromogranins. Comparison of driving forces in binding and aggregation. J Biol Chem 267:3066–3073

    CAS  PubMed  Google Scholar 

  • Weber A, Westhead EW, Winkler H (1983) Specificity and properties of the nucleotide carrier in chromaffin granules from bovine adrenal medulla. Biochem J 210:789–794

    CAS  PubMed  Google Scholar 

  • Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, Near JA, Diliberto EJ, Viveros OH (1991) Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Nat Acad Sci USA 88:10754–10758

    Article�� CAS  PubMed  Google Scholar 

  • Winkler H, Westhead E (1980) The molecular organization of adrenal chromaffin granules. Neuroscience 5:1803–1823

    Article  CAS  PubMed  Google Scholar 

  • Wolkersdorfer M, Laslop A, Lazure C, Fischer-Colbrie R, Winkler H (1996) Processing of chromogranins in chromaffin cell culture: effects of reserpine and alpha-methyl-p-tyrosine. Biochem J 316(Pt 3):953–958

    CAS  PubMed  Google Scholar 

  • Yoo SH (1996) pH- and Ca(2+)-dependent aggregation property of secretory vesicle matrix proteins and the potential role of chromogranins A and B in secretory vesicle biogenesis. J Biol Chem 271:1558–1565

    CAS  PubMed  Google Scholar 

  • Yoo SH (2010) Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells. FASEB J 24(3):653–654

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH, Albanesi JP (1990) Ca2(+)-induced conformational change and aggregation of chromogranin A. J Biol Chem 265:14414–14421

    CAS  PubMed  Google Scholar 

  • Yoo SH, Albanesi JP (1991) High capacity, low affinity Ca2+ binding of chromogranin A. Relationship between the pH-induced conformational change and Ca2+ binding property. J Biol Chem 266:7740–7745

    CAS  PubMed  Google Scholar 

  • Zanner R, Gratzl M, Prinz C (2002) Circle of life of secretory vesicles in gastric enterochromaffin-like cells. Ann N Y Acad Sci 971:389–396

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Rao F, Rana BK, Gayen JR, Callegary F, King A, Rosa P, Huttner WB, Stridsberg M, Mahata M, Vaingankar SM, Mahboubi V, Salem RM, Rodriguez-Flores JL, Fung MM, Smith DW, Schork NJ, Ziegler MG, Taupenot L, Mahata SK, O’Connor DT (2009) Autonomic function in hypertension: role of genetic variations at the catecholamine storage vesicle protein chromogranin B. Circ Cardiovasc Gen 2:46–56

    Article  CAS  Google Scholar 

  • Zhao E, Zhang D, Basak A, Trudeau VL (2009) New insights into granin-derived peptides: evolution and endocrine roles. Gen Comp Endocrinol 164:161–174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JDM holds a CONSOLIDER contract (CSD2008-00005). ND was the recipient of a FPU fellowship from the Spanish Ministry of Science and Innovation (MICINN). MRP is a recipient of a fellowship from the Canary Islands Agency for Research, Innovation and Information Society (CIARIIS/FEDER). This study was supported by the Spanish Ministry of Science and Innovation (BFU2007-64963) and CONSOLIDER (RB), and CIARIIS/FEDER, PI2007/017 (JDM). We are grateful to the personnel of the animal house of the University of La Laguna for keeping the mouse strains. The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José D. Machado.

Additional information

A commentary to this article can be found at doi: 10.1007/s10571-010-9552-6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, J.D., Díaz-Vera, J., Domínguez, N. et al. Chromogranins A and B as Regulators of Vesicle Cargo and Exocytosis. Cell Mol Neurobiol 30, 1181–1187 (2010). https://doi.org/10.1007/s10571-010-9584-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9584-y

Keywords

Navigation