Skip to main content
Log in

Long-lasting floods buffer the thermal regime of the Pampas

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The presence of large water masses influences the thermal regime of nearby land shaping the local climate of coastal areas by the ocean or large continental lakes. Large surface water bodies have an ephemeral nature in the vast sedimentary plains of the Pampas (Argentina) where non-flooded periods alternate with flooding cycles covering up to one third of the landscape for several months. Based on temperature records from 17 sites located 1 to 700 km away from the Atlantic coast and MODIS land surface temperature data, we explore the effects of floods on diurnal and seasonal thermal ranges as well as temperature extremes. In non-flooded periods, there is a linear increase of mean diurnal thermal range (DTR) from the coast towards the interior of the region (DTR increasing from 10 to 16 K, 0.79 K/100 km, r 2 = 0.81). This relationship weakens during flood episodes when the DTR of flood-prone inland locations shows a decline of 2 to 4 K, depending on surface water coverage in the surrounding area. DTR even approaches typical coastal values 500 km away from the ocean in the most flooded location that we studied during the three flooding cycles recorded in the study period. Frosts-free periods, a key driver of the phenology of both natural and cultivated ecosystems, are extended by up to 55 days during floods, most likely as a result of enhanced ground heat storage across the landscape (~2.7 fold change in day-night heat transfer) combined with other effects on the surface energy balance such as greater night evaporation rates. The reduced thermal range and longer frost-free periods affect plant growth development and may offer an opportunity for longer crop growing periods, which may not only contribute to partially compensating for regional production losses caused by floods, but also open avenues for flood mitigation through higher plant evapotranspirative water losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrade JF, Satorre EH (2015) Single and double crop systems in the Argentine Pampas: environmental determinants of annual grain yield. Field Crop Res 177:137–147. doi:10.1016/j.fcr.2015.03.008

    Article  Google Scholar 

  • Aragón R, Jobbágy EG, Viglizzo EF (2011) Surface and groundwater dynamics in the sedimentary plains of the Western Pampas (Argentina). Ecohydrology 4:433–447. doi:10.1002/eco.149

    Article  Google Scholar 

  • Aschmann H (1973) Distribution and peculiarity of Mediterranean ecosystems. In: di Castri F, Mooney HA (eds) Mediterranean type ecosystems, vol 7, Studies Springer, vol Ecological. Berlin, Heidelberg, pp. 11–19

    Chapter  Google Scholar 

  • Baldi G, Paruelo JM (2008) Land use and land cover dynamics in South American temperate grasslands. Ecol Soc 13:6

    Article  Google Scholar 

  • Baldocchi D et al (2016) The impact of expanding flooded land area on the annual evaporation of rice agricultural and forest. Meteorology 223:181–193. doi:10.1016/j.agrformet.2016.04.001

    Google Scholar 

  • Ballesteros SI (2014) Inundaciones y su relación con el clima y la hidrología subterránea en el Noroeste de Buenos Aires (1980–2010): Aplicación de percepción remota. Universidad de Buenos Aires

  • Biancamaria S, Bates P, Boone A, Mognard N (2009) Large-scale coupled hydrologic and hydraulic modelling of the Ob river in Siberia. J Hydrol 379:136–150. doi:10.1016/j.jhydrol.2009.09.054

    Article  Google Scholar 

  • Eaton AK, Rouse WR, Lafleur PM, Marsh P, Blanken PD (2001) Surface energy balance of the western and central Canadian subarctic: variations in the energy balance among five major terrain types. J Clim 14:3692–3703

    Article  Google Scholar 

  • Geiger R (1967) The climate near the ground. Q J R Meteorol Soc 93:150–151. doi:10.1002/qj.49709339529

    Google Scholar 

  • Gu L et al (2008) The 2007 eastern US spring freeze: increased cold damage in a warming world? Bioscience 58:253–262

    Article  Google Scholar 

  • Hall AJ, Rebella CM, Ghersa C, Culot J (1992) Field crop systems of the Pampas. In: Pearson CJ (ed) Ecosystems of the world. Field Crop Ecosystems. Elsevier, Amsterdam, pp. 413–450

    Google Scholar 

  • Hamilton SK, Sippel SJ, Melack JM (2002) Comparison of inundation patterns among major south American floodplains. Journal of Geophysical Research: Atmospheres 107:LBA 5-1–LBA 5-14. doi:10.1029/2000jd000306

    Google Scholar 

  • Hamilton SK, Sippel SJ, Melack JM (2004) Seasonal inundation patterns in two large savanna floodplains of South America: the Llanos de Moxos (Bolivia) and the Llanos del Orinoco (Venezuela and Colombia). Hydrol Process 18:2103–2116. doi:10.1002/hyp.5559

    Article  Google Scholar 

  • Higgins CW, Pardyjak E, Froidevaux M, Simeonov V, Parlange MB (2013) Measured and estimated water vapor advection in the atmospheric surface layer. J Hydrometeorol 14:1966–1972. doi:10.1175/JHM-D-12-0166.1

    Article  Google Scholar 

  • Hillel D (2003) Soil physics and soil physical characteristics. In: introduction to environmental soil physics (first). Academic Press, Burlington, pp. 3–17. doi:10.1016/B978-012348655-4/50002-2

    Book  Google Scholar 

  • Hinkel KM, Nelson FE (2012) Spatial and temporal aspects of the lake effect on the southern shore of Lake Superior. Theor Appl Climatol 109:415–428. doi:10.1007/s00704-012-0585-2

    Article  Google Scholar 

  • Hirshhorn J (1952) Las heladas en la República Argentina. Índices Agroclimáticos. Servicio Meteorológico Nacional, Buenos Aires

  • Iriondo MH (1999) The Neogene of the Llanos-Chaco-Pampa Depression Episodes 22:226–231

  • Jobbágy EG, Jackson RB (2000) Global controls of forest line elevation in the northern and southern hemispheres. Glob Ecol Biogeogr 9:253–268. doi:10.1046/j.1365-2699.2000.00162.x

    Article  Google Scholar 

  • Jobbágy EG, Nosetto MD, Santoni C, Baldi G (2008) El desafío ecohidrológico de las transiciones entre sistemas leñosos y herbáceos en la llanura Chaco-Pampeana. Ecología Austral 18:305–322

    Google Scholar 

  • Kopec RJ (1967) Effects of the Great Lakes’ thermal influence on freeze-free dates in spring and fall as determined by Hopkins’ bioclimatic law. Agric Meteorol 4:241–253

    Article  Google Scholar 

  • Krinner G (2003) Impact of lakes and wetlands on boreal climate. Journal of Geophysical Research: Atmospheres 108:4520. doi:10.1029/2002jd002597

    Article  Google Scholar 

  • Kuppel S, Houspanossian J, Nosetto M, Jobbágy E (2015) What does it take to flood the pampas? lessons from a decade of strong hydrological fluctuations. Water Resour Res 51:2937–2950

    Article  Google Scholar 

  • Liao X, Liu Z, Wang Y, Jin J (2013) Spatiotemporal variation in the microclimatic edge effect between wetland and farmland. Journal of Geophysical Research Atmospheres 118:7640–7650. doi:10.1002/jgrd.50573

    Article  Google Scholar 

  • Long Z, Perrie W, Gyakum J, Caya D, Laprise R (2007) Northern lake impacts on local seasonal climate. J Hydrometeorol 8:881–896. doi:10.1175/JHM591.1

    Article  Google Scholar 

  • Madonni GA (2012) Analysis of the climatic constraints to maize production in the current agricultural region of Argentina—a probabilistic approach. Theor Appl Climatol 107:325–345

    Article  Google Scholar 

  • Magliano PN, Fernández RJ, Mercau JL, Jobbágy EG (2015) Precipitation event distribution in Central Argentina: spatial and temporal patterns. Ecohydrology 8:94–104. doi:10.1002/eco.1491

    Article  Google Scholar 

  • Mallard MS et al (2015) Technical challenges and solutions in representing lakes when using WRF in downscaling applications Geoscientific Model. Development 8:1085–1096. doi:10.5194/gmd-8-1085-2015

    Google Scholar 

  • Moncaut CA (1978) Pampas y Estancias. El Aljibe, City Bell, Bs. As., Argentina

  • Moncaut CA (2001) Inundaciones y sequías en la pampa bonaerense vol 1–108. El Aljibe, City Bell, Bs.As., Argentina

  • Nicholls JF, Toumi R (2014) On the lake effects of the Caspian Sea Quarterly. J R Meteorol Soc 140:1399–1408. doi:10.1002/qj.2222

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. International J Climatol 20:1823–1841. doi:10.1002/1097-0088(20001130)20:14<1823::aid-joc566>3.0.co;2-b

    Article  Google Scholar 

  • Nordbo A, Launiainen S, Mammarella I, Leppäranta M, Huotari J, Ojala A, Vesala T (2011) Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. Journal of Geophysical Research: Atmospheres 116:2119. doi:10.1029/2010jd014542

    Article  Google Scholar 

  • Nosetto MD, Jobbágy EG, Brizuela AB, Jackson RB (2012) The hydrologic consequences of land cover change in Central Argentina agriculture. Ecosystems and Environment 154:2–11

    Article  Google Scholar 

  • Oncley SP, Lenschow DH, Campos TL, Davis KJ, Mann J (1997) Regional-scale surface flux observations across the boreal forest during BOREAS. Journal of Geophysical Research: Atmospheres 102:29147–29154. doi:10.1029/97jd00242

    Article  Google Scholar 

  • Ordóñez RA, Savin R, Cossani CM, Slafer GA (2015) Yield response to heat stress as affected by nitrogen availability in maize. Field Crop Res 183:184–203. doi:10.1016/j.fcr.2015.07.010

    Article  Google Scholar 

  • Otegui ME, Nicolini MG, Ruiz RA, Dodds PA (1995) Sowing date effects on grain yield components for different maize genotypes. Agro J 87:29–33

    Article  Google Scholar 

  • Rouse WR et al (2005) The role of northern lakes in a regional energy balance. J Hydrometeorol 6:291–305. doi:10.1175/jhm421.1

    Article  Google Scholar 

  • Samuelsson P, Kourzeneva E, Mironov D (2010) The impact of lakes on the European climate as stimulated by a regional climate model. Boreal Environ Res 15:113–119

    Google Scholar 

  • Scott RW, Huff FA (1996) Impacts of the Great Lakes on regional climate conditions. J Great Lakes Res 22:845–863

    Article  Google Scholar 

  • Soriano A (1992) Rio de la Plata grasslands Natural grasslands:367–407

  • Subin ZM, Murphy LN, Li F, Bonfils C, Riley WJ (2012) Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: aAnalyses in the Community Earth System Model 1 (CESM1). Tellus Ser A Dyn Meteorol Oceanogr 64:1–21. doi:10.3402/tellusa.v64i0.15639

    Article  Google Scholar 

  • Tabachnick WJ (2010) Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J Exp Biol 213:946–954. doi:10.1242/jeb.037564

    Article  Google Scholar 

  • Thomas SM, Obermayr U, Fischer D, Kreyling J, Beierkuhnlein C (2012) Low-temperature threshold for egg survival of a post-diapause and non-diapause European aedine strain, Aedes albopictus (Diptera: Culicidae). Parasit Vectors 5:1–7. doi:10.1186/1756-3305-5-100

    Article  Google Scholar 

  • Venäläinen A, Frech M, Heikinheimo M, Grelle A (1999) Comparison of latent and sensible heat fluxes over boreal lakes with concurrent fluxes over a forest: implications for regional averaging. Agric For Meteorol 98-99:535–546. doi:10.1016/s0168-1923(99)00100-8

    Article  Google Scholar 

  • Viglizzo EF, Jobbágy EG, Carreño LV, Frank FC, Aragón RM, De Oro L, Salvador VS (2009) The dynamics of cultivation and floods in arable lands of Central Argentina. Hydrol Earth Syst Sci 13:491–502

    Article  Google Scholar 

  • Wang W, Liang S, Meyers T (2008) Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sens Environ 112:623–635. doi:10.1016/j.rse.2007.05.024

    Article  Google Scholar 

  • Wang W et al (2014) Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China. J Hydrol 511:811–824. doi:10.1016/j.jhydrol.2014.02.012

    Article  Google Scholar 

  • West JW (2003) Effects of heat-stress on production in dairy cattle. J Dairy Sci 86:2131–2144. doi:10.3168/jds.S0022-0302(03)73803-X

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the National Research Council of Argentina (CONICET), the International Research Development Centre [IDRC-Canada, Project 106601-001], ANPCyT [PRH 27 [PICT 2013-2973; PICT 2014-2790], and the Inter-American Institute for Global Change Research [IAI, CRN II 2031], which is supported by the US National Science Foundation[Grant number 448 GEO-0452325]. We thank Dr. Horacio Zagarese from INTECH for the lagoon temperature dataset provided. We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Houspanossian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houspanossian, J., Kuppel, S., Nosetto, M. et al. Long-lasting floods buffer the thermal regime of the Pampas. Theor Appl Climatol 131, 111–120 (2018). https://doi.org/10.1007/s00704-016-1959-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1959-7

Navigation