Skip to main content
Log in

Memory-guided attention: bilateral hippocampal volume positively predicts implicit contextual learning

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Several studies have begun to demonstrate that contextual memories constitute an important mechanism to guide our attention. Although there is general consensus that the hippocampus is involved in the encoding of contextual memories, it is controversial whether this structure can support implicit forms of contextual memory. Here, we combine automated segmentation of structural MRI with neurobehavioral assessment of implicit contextual memory-guided attention to test the hypothesis that hippocampal volume would predict the magnitude of implicit contextual learning. Forty healthy subjects underwent 3T magnetic resonance imaging brain scanning with subsequent automatic measurement of the total brain and hippocampal (right and left) volumes. Implicit learning of contextual information was measured using the contextual cueing task. We found that both left and right hippocampal volumes positively predicted the magnitude of implicit contextual learning. Larger hippocampal volume was associated with superior implicit contextual memory performance. This study provides compelling evidence that implicit contextual memory-guided attention is hippocampus-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acheson DT, Gresack JE, Risbrough VB (2012) Hippocampal dysfunction effects on context memory: possible etiology for posttraumatic stress disorder. Neuropharmacology 62(2):674–685

    Article  CAS  PubMed  Google Scholar 

  • Alvarez RP, Biggs A, Chen G, Pine DS, Grillon C (2008) Contextual fear conditioning in humans: cortical-hippocampal and amygdala contributions. J Neurosci 28(24):6211–6219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aminoff E, Schacter DL, Bar M (2008) The cortical underpinnings of context-based memory distortion. J Cogn Neurosci 20:2226–2237

    Article  PubMed  PubMed Central  Google Scholar 

  • Aminoff E, Kveraga K, Bar M (2013) The role of the parahippocampal cortex in cognition. Trends Cogn Sci 17:379–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Auckland ME, Cave KR, Donnelly N (2007) Nontarget objects can influence perceptual processes during object recognition. Psychon Bull Rev 14(2):332–337

    Article  PubMed  Google Scholar 

  • Bar M, Ullman S (1996) Spatial context in recognition. Perception 25:343–352

    Article  CAS  PubMed  Google Scholar 

  • Bar M, Aminoff E, Ishai A (2008) Famous faces activate contextual associations in the parahippocampal cortex. Cereb Cortex 18:1233–1238

    Article  PubMed  Google Scholar 

  • Brewin CR, Kleiner JS, Vasterling JJ, Field AP (2007) Memory for emotionally neutral information in posttraumatic stress disorder: a meta-analytic investigation. J Abnorm Psychol 116(3):448–463

    Article  PubMed  Google Scholar 

  • Buchsbaum B, D’Esposito M (2009) Repetition suppression and reactivation in auditory-verbal short-term recognition memory Cereb. Cortex 19:1474–1485

    Article  Google Scholar 

  • Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641

    Article  CAS  PubMed  Google Scholar 

  • Cacciaglia R, Pohlack ST, Flor H, Nees F (2015) Dissociable roles for hippocampal and amygdalar volume in human fear conditioning. Brain Struct Funct 220:2575–2586

    Article  PubMed  Google Scholar 

  • Chun MM, Jiang Y (1998) Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cogn Psychol 36(1):28–71

    Article  CAS  PubMed  Google Scholar 

  • Chun MM, Phelps EA (1999) Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nat Neurosci 2(9):844–847

    Article  CAS  PubMed  Google Scholar 

  • Cohen NJ, Poldrack R, Eichenbaum H (1997) Memory for items and memory for relations in the procedural/declarative memory framework. Memory 5:131–178

    Article  CAS  PubMed  Google Scholar 

  • Cohen NJ, Ryan J, Hunt C, Romine L, Wszalek T, Nash C (1999) Hippocampal system and declarative (relational) memory: summarizing the data from functional neuroimaging studies. Hippocampus 9(1):83–98

    Article  CAS  PubMed  Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194

    Article  CAS  PubMed  Google Scholar 

  • Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980

    Article  PubMed  Google Scholar 

  • Eichenbaum H, Otto T, Cohen NJ (1994) Two component functions of the hippocampal memory system. Behav Brain Sci 17:449–517

    Article  Google Scholar 

  • Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425(6954):184–188

    Article  CAS  PubMed  Google Scholar 

  • Elman JA, Shimamura AP (2011) Task relevance modulates successful retrieval effects during explicit and implicit memory tests. Neuroimage 56:345–353

    Article  PubMed  Google Scholar 

  • Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601

    Article  CAS  PubMed  Google Scholar 

  • Epstein R, Ward E (2010) How reliable are visual context effects in the parahippocampal place area? Cereb Cortex 20:294–303

    Article  PubMed  Google Scholar 

  • Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97:11044–11049

    Article  Google Scholar 

  • Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207

    Article  CAS  PubMed  Google Scholar 

  • Geyer T, Baumgartner F, Müller HJ, Pollmann S (2012) Medial temporal lobe-dependent repetition suppression and enhancement due to implicit vs. explicit processing of individual repeated search displays. Front Hum Neurosci 6:272

    Article  PubMed  PubMed Central  Google Scholar 

  • Giesbrecht B, Sy JL, Guerin SA (2013) Both memory and attention systems contribute to visual search for targets cued by implicitly learned context. Vis Res 85:80–89

    Article  PubMed  Google Scholar 

  • Giovanello KS, Verfaellie M, Keane MM (2003) Disproportionate deficit in associative recognition relative to item recognition in global amnesia. Cogn Affect Behav Neurosci 3(3):186–194

    Article  PubMed  Google Scholar 

  • Goldfarb EV, Chun MM, Phelps EA (2016) Memory-guided attention: independent contributions of the hippocampus and striatum. Neuron 89:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene AJ, Gross WL, Elsinger CL, Rao SM (2007) Hippocampal differentiation without recognition: an fMRI analysis of the contextual cueing task. Learn Mem 14(8):548–553

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimm O, Pohlack S, Cacciaglia R, Winkelmann T, Plichta MM, Demirakca T, Flor H (2015) Amygdalar and hippocampal volume: a comparison between manual segmentation, Freesurfer and VBM. J Neurosci Methods 253:254–261

    Article  PubMed  Google Scholar 

  • Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32:180–194

    Article  Google Scholar 

  • Hannula DE, Greene AJ (2012) The hippocampus reevaluated in unconscious learning and memory: at a tipping point? Front Hum Neurosci 6(80):1–20

    Google Scholar 

  • Hannula DE, Ranganath C (2009) The eyes have it: hippocampal activity predicts expression of memory in eye movements. Neuron 63:592–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henke K (2010) A model for memory systems based on processing modes rather than consciousness. Nat Rev Neurosci 11(7):523–532

    Article  CAS  PubMed  Google Scholar 

  • Henke K, Buck A, Weber B, Wieser HG (1997) Human hippocampus establishes associations in memory. Hippocampus 7(3):249–256

    Article  CAS  PubMed  Google Scholar 

  • Horner AJ, Gadian DG, Fuentemilla L, Jentschke S, Vargha-Khadem F et al (2012) A rapid, hippocampus-dependent, item-memory signal that initiates context memory in humans. Curr Biol 22:2369–2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson JB, Turk-Browne NB (2012) Memory-guided attention: control from multiple memory systems. Trends Cogn Sci 16(12):576–579

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyman JM, Ma L, Balaguer-Ballester E, Durstewitz D, Seamans JK (2012) Contextual encoding by ensembles of medial prefrontal cortex neurons. Proc Natl Acad Sci 109(13):5086–5091

    Article  PubMed  Google Scholar 

  • Konkel A, Cohen NJ (2009) Relational memory and the hippocampus: representations and methods. Front Neurosci 3:166–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Kveraga K et al (2011) Early onset of neural synchronization in the contextual associations network. Proc Natl Acad Sci USA 108:3389–3394

    Article  PubMed  Google Scholar 

  • Lang S, Kroll A, Lipinski SJ, Wessa M, Ridder S, Christmann C et al (2009) Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex. Eur J Neurosci 29(4):823–832

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee TG, Blumenfeld RS, D’Esposito M (2013) Disruption of dorsolateral but not ventrolateral prefrontal cortex improves unconscious perceptual memories. J Neurosci 33(32):13233–13237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manelis A, Reder LM (2012) Procedural learning and associative memory mechanisms contribute to contextual cueing: evidence from fMRI and eye-tracking. Learn Mem 9:527–534

    Article  Google Scholar 

  • Manelis A, Reder LM, Hanson SJ (2011) Dynamic changes in the medial temporal lobe during incidental learning of object-location associations. Cereb Cortex 22:828–837

    Article  PubMed  PubMed Central  Google Scholar 

  • Manginelli A, Langer N, Klose D, Pollmann S (2013) Contextual cueing under working memory load: selective interference of viuospatial load with expression of learning. Attent Percept Psychophys 75:1103–1117

    Article  Google Scholar 

  • Manns JR, Squire LR (2001) Perceptual learning, awareness, and the hippocampus. Hippocampus 11:776–782

    Article  CAS  PubMed  Google Scholar 

  • Maren S, Phan KL, Liberzon I (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 14(6):417–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moscovitch M (1992) Memory and working-with-memory: a component process model based on modules and central systems. J Cogn Neurosci 4:257–267

    Article  CAS  PubMed  Google Scholar 

  • Moscovitch M (2008) The hippocampus as a “stupid” domain-specific module: implications for theories of recent and remote memory, and of imagination. Can J Exp Pychol 62:62–79

    Article  Google Scholar 

  • Moscovitch M, Nadel L, Winocur G, Gilboa A, Rosenbaum RS (2006) The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr Opin Neurobiol 16:179–190

    Article  CAS  PubMed  Google Scholar 

  • Moses SN, Ryan JD (2006) A comparison and evaluation of the predictions of relational and conjunctive accounts of hippocampal function. Hippocampus 16:43–65

    Article  PubMed  Google Scholar 

  • Olson IR, Moore KS, Stark M, Chatterjee A (2006) Visual working memory is impaired when the medial temporal lobe is damaged. J Cogn Neurosci 18:1087–1097

    Article  PubMed  Google Scholar 

  • Park H, Quinlan J, Thornton E, Reder LM (2004) The effect of midazolam on visual search: implications for understanding amnesia. Proc Natl Acad Sci USA 101(51):17879–17883

    Article  CAS  PubMed  Google Scholar 

  • Peters J, Daum I, Gizewski E, Forsting M, Suchan B (2009) Associations evoked during memory encoding recruit the context-network. Hippocampus 19:141–151

    Article  PubMed  Google Scholar 

  • Piekema C, Kessels RP, Mars RB, Petersson KM, Fernandez G (2006) The right hippocampus participates in short-term memory maintenance of object-location associations. Neuroimage 33:374–382

    Article  PubMed  Google Scholar 

  • Pohlack ST, Nees F, Ruttorf M, Witt SH, Nieratschker V, Rietschel M, Flor H (2011) Risk variant for schizophrenia in the neurogranin gene impacts on hippocampus activation during contextual fear conditioning. Mol Psychiatry 16(11):1072–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohlack ST, Nees F, Liebscher C, Cacciaglia R, Diener SJ, Ridder S et al (2012) Hippocampal but not amygdalar volume affects contextual fear conditioning in humans. Hum Brain Mapp 33(2):478–488

    Article  PubMed  Google Scholar 

  • Pohlack ST, Meyer P, Cacciaglia R, Liebscher C, Ridder S, Flor H (2014) Bigger is better! Hippocampal volume and declarative memory performance in healthy young men. Brain Struct Funct 219(1):255–267

    Article  PubMed  Google Scholar 

  • Preston AR, Gabrieli JD (2008) Dissociation between explicit memory and configural memory in the human medial temporal lobe. Cereb Cortex 18:2192–2207

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajah MN, Kromas M, Han JE, Pruessner JC (2010) Group differences in anterior hippocampal volume and in the retrieval of spatial and temporal context memory in healthy young versus older adults. Neuropsychologia 48:4020–4030

    Article  PubMed  Google Scholar 

  • Ranganath C (2010) A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory. Hippocampus 20(11):1263–1290

    Article  PubMed  Google Scholar 

  • Reder LM, Park H, Kieffaber PD (2009) Memory systems do not divide on consciousness: reinterpreting memory in terms of activation and binding. Psychol Bull 135:23–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosen ML, Stern CE, Devaney KJ, Somers DC (2017) Cortical and subcortical contributions to long-term memory-guided visuospatial attention. Cereb Cortex 27:1–13

    Article  Google Scholar 

  • Rudy JW, Huff NC, Matus-Amat P (2004) Understanding contextual fear conditioning: insights from a two-process model. Neurosci Biobehav Rev 28(7):675–685

    Article  CAS  PubMed  Google Scholar 

  • Ryan JD, Cohen NJ (2003) Evaluating the neuropsychological dissociation evidence for multiple memory systems. Cogn Affect Behav Neurosci 3:168–185

    Article  PubMed  Google Scholar 

  • Squire LR (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 82:171–177

    Article  PubMed  Google Scholar 

  • Staresina BP, Davachi L (2008) Selective and shared contributions of the hippocampus and perirhinal cortex to episodic item and associative encoding. J Cogn Neurosci 20:1478–1489

    Article  PubMed  PubMed Central  Google Scholar 

  • Tulving E, Schacter DL (1990) Priming and human memory systems. Science 247:301–306

    Article  CAS  PubMed  Google Scholar 

  • Turk-Browne NB, Scholl BJ, Chun MM, Johnson MK (2008) Neural evidence of statistical learning: efficient detection of visual regularities without awareness. J Cogn Neurosci 21:1934–1945

    Article  Google Scholar 

  • Turk-Browne NB, Scholl BJ, Johnson MK, Chun MM (2010) Implicit perceptual anticipation triggered by statistical learning. J Neurosci 30:11177–11187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turk-Browne NB, Golomb JD, Chun MM (2013) Complementary attentional components of successful memory encoding. Neuroimage 66:553–562

    Article  PubMed  Google Scholar 

  • Westerberg CE, Miller BB, Reber PJ, Cohen NJ, Paller KA (2011) Neural correlates of contextual cueing are modulated by explicit learning. Neuropsychologia 49:3439–3447

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkelmann T, Thayer JF, Pohlack S, Nees F, Grimm O, Flor H (2017) Structural brain correlates of heart rate variability in a healthy young adult population. Brain Struct Funct 222(2):1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Wittchen HU, Wunderlich U, Gruschwitz S, Zaudig M (1997): SKID-I. Strukturiertes Klinisches Interview für DSM-IV. “Structured Clinical Interview for DSM-IV”. Hogrefe, Gottingen

Download references

Acknowledgements

This research was supported by Grant SFB636⁄C1 from the Deutsche Forschungsgemeinschaft to HF and, Administrative Department of Science, Technology and Innovation (Colciencias) Grant to MR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herta Flor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The authors state that this manuscript is in accordance with the Authorship statement of ethical standards for manuscripts submitted to Brain Structure and Function.

Ethical approval

The Ethics Committee of the Medical Faculty Mannheim of the University of Heidelberg approved the study.

Informed consent

We obtained written informed consent from all persons before participation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Frauke Nees and Herta Flor joint last authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table

 1. Summary of linear regression analysis results predicting contextual cueing performance from cortical volumes of Desikan parcellations, including only those participants who showed a positive contextual cueing effect. (PNG 1939 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosero, M.A., Winkelmann, T., Pohlack, S. et al. Memory-guided attention: bilateral hippocampal volume positively predicts implicit contextual learning. Brain Struct Funct 224, 1999–2008 (2019). https://doi.org/10.1007/s00429-019-01887-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-019-01887-9

Keywords

Navigation