Skip to main content
Log in

Regional specific adaptation of the endothelial glycocalyx dimension in tail-suspended rats

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Previous animal studies by using tail-suspended hindlimb-unloaded rat model have shown that simulated microgravity-induced vessel structural and functional remodeling may be anatomic region dependent. However, little care has been taken to assess the structural adaptation of the endothelial glycocalyx, the apical surface of the endothelium, the key mechanosensor mediating nitric oxide (NO) production, and the natural protective barrier of the vasculature. Therefore, the present study extended simulated microgravity-induced vessel remodeling to the endothelial glycocalyx level. The percents of bone mineral density (BMD) change from both control and tail-suspended (TS) rats were measured by micro-computed tomography (Micro-CT). Structural parameters such as the luminal diameter (D), the thickness of each layer, the ratio of intima to media (IMR), the cross-sectional areas of the intima (CSAI) and media (CSAM) of vessels from three different regions (the common carotid artery, abdominal aorta, and femoral artery) were assessed by hematoxylin and eosin staining. Dimensions of the glycocalyx above, below, and away from the endothelial cell nucleus were examined by fluorescein isothiocyanate-labeled wheat germ agglutinin (WGA-FITC) binding to the cryosection of vessels. Our results show that 3-week tail suspension of rats increases the thickness and CSA of the abdominal aortic endothelium by 23.7 and 21.1 %, respectively, thickens the media layer of the common carotid artery by 34.0 %, and increases the luminal diameter, the CSA of the intima and media of the femoral artery by 75.7, 93, and 61.2 %, respectively. Correspondingly, the dimension of the glycocalyx away from the common carotid arterial and the abdominal aortic endothelial cell nucleus from tail-suspended rats shows a 1.66- and 1.64-fold increase respectively, while it shows a 0.79-fold reduction on the top of the femoral endothelial cells. These results suggest that simulated microgravity induces vascular endothelial glycocalyx remodeling in a regional-dependent manner. The perturbation of the endothelial glycocalyx at the lower body artery may be the first event of vascular remodeling initiating endothelial dysfunction, contributing to postspaceflight orthostatic intolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barkefors I, Aidun CK, Ulrika Egertsdotter EM (2007) Effect of fluid shear stress on endocytosis of heparan sulfate and low-density lipoproteins. J Biomed Biotechnol 2007:65136. doi:10.1155/2007/65136

    Article  PubMed Central  PubMed  Google Scholar 

  2. Barker ALKO, Neal CR, Macpherson JV, Whatmore JL, Winlove CP, Unwin PR, Shore AC (2004) Observation and characterisation of the glycocalyx of viable human endothelial cells using confocal laser scanning microscopy. Phys Chem Chem Phys 6:6. doi:10.1039/B312189E

    Article  Google Scholar 

  3. Chew HG Jr, Segal SS (1997) Arterial morphology and blood volumes of rats following 10–14 weeks of tail suspension. Med Sci Sports Exerc 29(10):1304–1310

    Article  PubMed  Google Scholar 

  4. Constantinescu AA, Vink H, Spaan JA (2003) Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 23(9):1541–1547. doi:10.1161/01.ATV.0000085630.24353.3D

    Article  CAS  PubMed  Google Scholar 

  5. Cooke WH, Ames JI, Crossman AA, Cox JF, Kuusela TA, Tahvanainen KU, Moon LB, Drescher J, Baisch FJ, Mano T, Levine BD, Blomqvist CG, Eckberg DL (1985) Nine months in space: effects on human autonomic cardiovascular regulation. J Appl Physiol 89(3):1039–1045

    Google Scholar 

  6. Curry FE (1986) Determinants of capillary permeability: a review of mechanisms based on single capillary studies in the frog. Circ Res 59(4):367–380

    Article  CAS  PubMed  Google Scholar 

  7. D'Angelo G, Meininger GA (1994) Transduction mechanisms involved in the regulation of myogenic activity. Hypertension 23(6 Pt 2):1096–1105

    Article  PubMed  Google Scholar 

  8. Delp MD, Colleran PN, Wilkerson MK, McCurdy MR, Muller-Delp J (2000) Structural and functional remodeling of skeletal muscle microvasculature is induced by simulated microgravity. Am J Physiol Heart Circ Physiol 278(6):H1866–1873

    CAS  PubMed  Google Scholar 

  9. Dull RO, Mecham I, McJames S (2007) Heparan sulfates mediate pressure-induced increase in lung endothelial hydraulic conductivity via nitric oxide/reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 292(6):L1452–1458. doi:10.1152/ajplung.00376.2006

    Article  CAS  PubMed  Google Scholar 

  10. Edgell H, Kaufman S (2008) Effect of hindlimb unloading on salt and water intake and output in male and female rats. Med Sci Sports Exerc 40(7):1249–1254. doi:10.1249/MSS.0b013e31816a2450

    Article  PubMed  Google Scholar 

  11. Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93(10):e136–142. doi:10.1161/01.RES.0000101744.47866.D5

    Article  CAS  PubMed  Google Scholar 

  12. Foley CM, Mueller PJ, Hasser EM, Heesch CM (2005) Hindlimb unloading and female gender attenuate baroreflex-mediated sympathoexcitation. Am J Physiol Regul Integr Comp Physiol 289(5):R1440–1447. doi:10.1152/ajpregu.00356.2005

    Article  CAS  PubMed  Google Scholar 

  13. Fritsch-Yelle JM, Whitson PA, Bondar RL, Brown TE (1996) Subnormal norepinephrine release relates to presyncope in astronauts after spaceflight. J Appl Physiol (1985) 81 (5):2134–2141

  14. Gao F, Bao JX, Xue JH, Huang J, Huang WQ, Wu SX, Zhang LF (2009) Regional specificity of adaptation change in large elastic arteries of simulated microgravity rats. Acta Physiol Hung 96(2):167–187. doi:10.1556/APhysiol.96.2009.2.3

    Article  CAS  PubMed  Google Scholar 

  15. Geary GG, Krause DN, Purdy RE, Duckles SP (1998) Simulated microgravity increases myogenic tone in rat cerebral arteries. J Appl Physiol (1985) 85 (5):1615–1621

  16. Gouverneur M, Spaan JA, Pannekoek H, Fontijn RD, Vink H (2006) Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 290(1):H458–452. doi:10.1152/ajpheart.00592.2005

    Article  CAS  PubMed  Google Scholar 

  17. Grenon SM, Xiao X, Hurwitz S, Sheynberg N, Kim C, Seely EW, Cohen RJ, Williams GH (2006) Why is orthostatic tolerance lower in women than in men? Renal and cardiovascular responses to simulated microgravity and the role of midodrine. J Investig Med 54(4):180–190

    Article  CAS  PubMed  Google Scholar 

  18. Hargens AR, Richardson S (2009) Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respir Physiol Neurobiol 169(Suppl 1):S30–33. doi:10.1016/j.resp.2009.07.005

    Article  PubMed  Google Scholar 

  19. Kang H, Liu M, Fan Y, Deng X (2013) A potential gravity-sensing role of vascular smooth muscle cell glycocalyx in altered gravitational stimulation. Astrobiology 13(7):626–636. doi:10.1089/ast.2012.0944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Koo A, Dewey CF Jr, Garcia-Cardena G (2013) Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am J Physiol Cell Physiol 304(2):C137–146. doi:10.1152/ajpcell.00187.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lee RM (1987) Preservation of in vivo morphology of blood vessels for morphometric studies. Scanning Microsc 1(3):1287–1293

    CAS  PubMed  Google Scholar 

  22. Lee RM, Forrest JB, Garfield RE, Daniel EE (1983) Comparison of blood vessel wall dimensions in normotensive hypertensive rats by histometric and morphometric methods. Blood Vessels 20(5):245–254

    CAS  PubMed  Google Scholar 

  23. Lin LJ, Gao F, Bai YG, Bao JX, Huang XF, Ma J, Zhang LF (2009) Contrasting effects of simulated microgravity with and without daily -Gx gravitation on structure and function of cerebral and mesenteric small arteries in rats. J Appl Physiol (1985) 107 (6):1710–1721. doi:10.1152/japplphysiol.00493.2009

  24. Ma J, Kahwaji CI, Ni Z, Vaziri ND, Purdy RE (2003) Effects of simulated microgravity on arterial nitric oxide synthase and nitrate and nitrite content. J Appl Physiol (1985) 94 (1):83–92. doi:10.1152/japplphysiol.00294.2002

  25. Mao QW, Zhang LF, Ma J (1999) Differentiated remodeling changes of medium-sized arteries from different body parts in tail-suspended rats and their reversibility. Space Med Med Eng (Beijing) 12(2):92–96

    CAS  Google Scholar 

  26. Megens RT, Reitsma S, Schiffers PH, Hilgers RH, De Mey JG, Slaaf DW, Oude Egbrink MG, van Zandvoort MA (2007) Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. J Vasc Res 44(2):87–98. doi:10.1159/000098259

    Article  CAS  PubMed  Google Scholar 

  27. Michel CC (1997) Starling: the formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years. Exp Physiol 82(1):1–30

    Article  CAS  PubMed  Google Scholar 

  28. Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol (1985) 92 (4):1367–1377. doi:10.1152/japplphysiol.00969.2001

  29. Nicogossian AE, Rummel JD, Leveton L, Teeter R (1992) Development of countermeasures for medical problems encountered in space flight. Adv Space Res 12(1):329–337

    Article  CAS  PubMed  Google Scholar 

  30. Noble MI, Drake-Holland AJ, Vink H (2008) Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM 101(7):513–518. doi:10.1093/qjmed/hcn024

    Article  CAS  PubMed  Google Scholar 

  31. Sides MB, Vernikos J, Convertino VA, Stepanek J, Tripp LD, Draeger J, Hargens AR, Kourtidou-Papadeli C, Pavy-LeTraon A, Russomano T, Wong JY, Buccello RR, Lee PH, Nangalia V, Saary MJ (2005) The Bellagio Report: cardiovascular risks of spaceflight: implications for the future of space travel. Aviat Space Environ Med 76(9):877–895

    PubMed  Google Scholar 

  32. Singh A, Satchell SC, Neal CR, McKenzie EA, Tooke JE, Mathieson PW (2007) Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J Am Soc Nephrol 18(11):2885–2893. doi:10.1681/ASN.2007010119

    Article  CAS  PubMed  Google Scholar 

  33. Stein TP, Wade CE (2001) The catecholamine response to spaceflight: role of diet and gender. Am J Physiol Endocrinol Metab 281(3):E500–506

    CAS  PubMed  Google Scholar 

  34. Summers RL, Platts S, Myers JG, Coleman TG (2010) Theoretical analysis of the mechanisms of a gender differentiation in the propensity for orthostatic intolerance after spaceflight. Theor Biol Med Model 7:8. doi:10.1186/1742-4682-7-8

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sun LW, Wang C, Pu F, de Li Y, Niu HJ, Fan YB (2011) Comparative study on measured variables and sensitivity to bone microstructural changes induced by weightlessness between in vivo and ex vivo micro-CT scans. Calcif Tissue Int 88(1):48–53. doi:10.1007/s00223-010-9422-8

    Article  CAS  PubMed  Google Scholar 

  36. Ueda A, Shimomura M, Ikeda M, Yamaguchi R, Tanishita K (2004) Effect of glycocalyx on shear-dependent albumin uptake in endothelial cells. Am J Physiol Heart Circ Physiol 287(5):H2287–2294. doi:10.1152/ajpheart.00808.2003

    Article  CAS  PubMed  Google Scholar 

  37. van den Berg BM, Spaan JA, Rolf TM, Vink H (2006) Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am J Physiol Heart Circ Physiol 290(2):H915–920. doi:10.1152/ajpheart.00051.2005

    Article  PubMed  Google Scholar 

  38. van den Berg BM, Vink H, Spaan JA (2003) The endothelial glycocalyx protects against myocardial edema. Circ Res 92(6):592–594. doi:10.1161/01.RES.0000065917.53950.75

    Article  PubMed  Google Scholar 

  39. van Haaren PM, VanBavel E, Vink H, Spaan JA (2003) Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy. Am J Physiol Heart Circ Physiol 285(6):H2848–2856. doi:10.1152/ajpheart.00117.2003

    Article  PubMed  Google Scholar 

  40. Wei B, Abobo CV, Ma J, Liang D (2012) Gender differences in pharmacokinetics of antipyrine in a simulated weightlessness rat model. Aviat Space Environ Med 83(1):8–13

    Article  CAS  PubMed  Google Scholar 

  41. Weinbaum S (1998) 1997 Whitaker Distinguished Lecture: models to solve mysteries in biomechanics at the cellular level; a new view of fiber matrix layers. Ann Biomed Eng 26(4):627–643

    Article  CAS  PubMed  Google Scholar 

  42. Wiener J, Loud AV, Giacomelli F, Anversa P (1977) Morphometric analysis of hypertension-induced hypertrophy of rat thoracic aorta. Am J Pathol 88(3):619–634

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Wilkerson MK, Muller-Delp J, Colleran PN, Delp MD (1999) Effects of hindlimb unloading on rat cerebral, splenic, and mesenteric resistance artery morphology. J Appl Physiol (1985) 87 (6):2115–2121

  44. Zhang LF (2001) Vascular adaptation to microgravity: what have we learned? J Appl Physiol (1985) 91 (6):2415–2430

  45. Zhang LF, Cheng JH, Liu X, Wang S, Liu Y, Lu HB, Ma J (2008) Cardiovascular changes of conscious rats after simulated microgravity with and without daily -Gx gravitation. J Appl Physiol (1985) 105 (4):1134–1145. doi:10.1152/japplphysiol.00184.2008

  46. Zhang LF, Ma J, Mao QW, Yu ZB (1997) Plasticity of arterial vasculature during simulated weightlessness and its possible role in the genesis of postflight orthostatic intolerance. J Gravit Physiol 4(2):P97–100

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Eno E Ebong, Dr. Limary M. Cancel, Wan-Yi Yen from the City College of New York for providing help on the glycocalyx staining and quantification. This work is supported by Grants-in-Aid from the National Natural Science Research Foundation of China (No. 31170904, 11332003), the Innovation Foundation of BUAA for PhD Graduates and Specialized Research Fund for the Doctoral Program of Higher Education (20121102110031).

Conflicts of interest

No competing financial interests exist.

Ethical Standards

All experiments were carried out in compliance to the current laws of the country.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yubo Fan or Xiaoyan Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Sun, L., Huang, Y. et al. Regional specific adaptation of the endothelial glycocalyx dimension in tail-suspended rats. Pflugers Arch - Eur J Physiol 467, 1291–1301 (2015). https://doi.org/10.1007/s00424-014-1568-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1568-1

Keywords

Navigation