Skip to main content
Log in

Uncertainty of climate response to natural and anthropogenic forcings due to different land use scenarios

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS) climate model (CM) of intermediate complexity is extended by a spatially explicit terrestrial carbon cycle module. Numerical experiments with the IAP RAS CM are performed forced by the reconstructions of anthropogenic and natural forcings for the 16th to the 20th centuries and by combined SRES (Special Report on Emission Scenarios) A2-LUH (Land Use Harmonization) anthropogenic scenarios for the 21st century. Hereby, the impact of uncertainty in land-use scenarios on results of simulations with a coupled climate-carbon cycle model is tested. The simulations of the model realistically reproduced historical changes in carbon cycle characteristics. In the IAP RAS CM, climate warming reproduced in the 20th and 21st centuries enhanced terrestrial net primary production but terrestrial carbon uptake was suppressed due to an overcompensating increase in soil respiration. Around year 2100, the simulations the model forced by different land use scenarios diverged markedly, by about 70 Pg (C) in terms of biomass and soil carbon stock but they differed only by about 10 in terms of atmospheric carbon dioxide content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, B., A. White, and T. M. Lenton, 2004: An analysis of some diverse approaches to modelling terrestrial net primary productivity. Ecological Modelling, 177, 353–391.

    Article  Google Scholar 

  • Ammann, C. M., G. A. Meehl, W. M. Washington, and C. S. Zender, 2003: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett., 30(12), 1657.

    Article  Google Scholar 

  • Angert, A., S. Biraud, C. Bonfils, and I. Fung, 2004: CO2 seasonality indicates origins of post-Pinatubo sink. Geophys. Res. Lett., 31(11), L11103.

    Article  Google Scholar 

  • Arora, V. K., and H. D. Matthews, 2009: Characterizing uncertainty in modeling primary terrestrial ecosystem processes. Global Biogeochemical Cycles, 23(2), GB2016.

    Article  Google Scholar 

  • Arzhanov, M. M., P. F. Demchenko, A. V. Eliseev, and I. I. Mokhov, 2008: Simulation of characteristics of thermal and hydrologic soil regimes in equilibrium numerical experiments with a climate model of intermediate complexity. Izvestiya, Atmospheric and Oceanic Physics, 44(5), 279–287.

    Article  Google Scholar 

  • Bacastow, B., 1981: Numerical evaluation of the evasion factor. Carbon Cycle Modelling, SCOPE-16, B. Bolin, Ed., J. Wiley and Sons, N. Y., 95–101.

    Google Scholar 

  • Brovkin, V., J. Bendtsen, M. Claussen, A. Ganopolski, C. Kubatzki, V. Petoukhov, and A. Andreev, 2002: Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model. Global Biogeochemical Cycles, 16(4), 1139.

    Article  Google Scholar 

  • Brovkin, V., S. Sitch, W. von Bloh, M. Claussen, E. Bauer, and W. Cramer, 2004: Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change Biology, 10, 1253–1266.

    Article  Google Scholar 

  • Budyko, M. I., 1977: Climate Changes. American Geophysical Union, Washington, D. C., 261pp.

    Google Scholar 

  • Budyko, M. I., and Y. A. Izrae, Eds., 1991: Anthropogenic Climate Change. Arizona Univ. Press, Tucson, 485pp.

    Google Scholar 

  • Collatz, G. J., M. Ribas-Carbo, and J. A. Berry, 1992: Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Australian Journal of Plant Physiology, 19(5), 519–538.

    Article  Google Scholar 

  • Cox, P. M., 2000: Description of the TRIFFID dynamic global vegetation model. Technical Report Hadley Centre technical note 24, Hadley Centre, Met. Office, Bracknell.

    Google Scholar 

  • Cox, P. M., R. A. Betts, C. D Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408(6809), 184–187.

    Article  Google Scholar 

  • Cramer, W., and Coauthors, 2001: Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 7(4), 357–373.

    Article  Google Scholar 

  • Cramer, W., D. W. Kicklighter, A. Bondeau, B. Moore, G. Churkina, B. Nemry, A. Ruimy, A. L. Schloss, and Participants of the Potsdam NPP model inter-comparison, 1999: Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Global Change Biology, 5(Suppl.1), 1–15.

    Article  Google Scholar 

  • Crutzen, P. J., 2006: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77(3–4), 211–219.

    Article  Google Scholar 

  • DeFries, R. S., C. B. Field, I. Fung, G. J. Collatz, and L. Bounoua, 1999: Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochemical Cycles, 13(3), 803–815.

    Article  Google Scholar 

  • Eliseev, A. V., 2008: Estimation of the uncertainty of future changes in atmospheric carbon dioxide concentration and its radiative forcing. Izvestiya, Atmospheric and Oceanic Physics, 44(3), 279–287.

    Article  Google Scholar 

  • Eliseev, A. V., 2011: An assessment of climate and carbon cycle changes in the 21st century taking into account uncertainty in values of governing parameters for terrestrial biota. Izvestiya, Atmospheric and Oceanic Physics, 47(2), 131–153.

    Article  Google Scholar 

  • Eliseev, A. V., M. M. Arzhanov, P. F. Demchenko, and I. I. Mokhov, 2009: Changes in climatic characteristics of Northern Hemisphere extratropical land in the 21st century: Assessments with the IAP RAS climate model. Izvestiya, Atmospheric and Oceanic Physics, 45(3), 271–283.

    Article  Google Scholar 

  • Eliseev, A. V., and I. I. Mokhov, 2007: Carbon cycle-climate feedback sensitivity to parameter changes of a zero-dimensional terrestrial carbon cycle scheme in a climate model of intermediate complexity. Theor. Appl. Climatol., 89(1–2), 9–24.

    Article  Google Scholar 

  • Eliseev, A. V., and I. I. Mokhov, 2008: Eventual saturation of the climate-carbon cycle feedback studied with a conceptual model. Ecological Modelling, 213(1), 127–132.

    Article  Google Scholar 

  • Eliseev, A. V., and I. I. Mokhov, 2011: Impact of radiative effect of albedo changes due to land use on results of simulations with the climate model. Izvestiya, Atmospheric and Oceanic Physics, 47(1), 15–39.

    Article  Google Scholar 

  • Eliseev, A. V., I. I. Mokhov, M. M. Arzhanov, P. F. Demchenko, and S. N. Denisov, 2008: Interaction of the methane cycle and processes in wetland ecosystems in a climate model of intermediate complexity. Izvestiya, Atmospheric and Oceanic Physics, 44(2), 139–152.

    Article  Google Scholar 

  • Eliseev, A. V., I. I. Mokhov, and A. A. Karpenko, 2007a: Climate and carbon cycle variations in the 20th and 21st centuries in a model ofintermediate complexity. Izvestiya, Atmospheric and Oceanic Physics, 43(1), 1–14.

    Article  Google Scholar 

  • Eliseev, A. V., I. I. Mokhov, and A. A. Karpenko, 2007b: Influence of direct sulfate-aerosol radiative forcing on the results of numerical experiments with a climate model of intermediate complexity. Izvestiya, Atmospheric and Oceanic Physics, 42(5), 544–554.

    Article  Google Scholar 

  • Farquhar, G. D., S. von Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78–90.

    Article  Google Scholar 

  • Friedlingstein, P., L. Bopp, P. Ciais, J.-L. Dufresne, L. Fairhead, H. Le Treut, P. Monfray, and J. Orr., 2001: Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 28(8), 1543–1546.

    Article  Google Scholar 

  • Friedlingstein, P., and Coauthors, 2006: Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19(22), 3337–3353.

    Article  Google Scholar 

  • Gedney, N., P. M. Cox, and C. Huntingford, 2004: Climate feedback from wetland methane emissions. Geophys. Res. Lett., 31(20), L20503.

    Article  Google Scholar 

  • Gerber, S., L. O. Hedin, M. Oppenheimer, S. W. Pacala, and E. Shevliakova, 2010: Nitrogen cycling and feedbacks in a global dynamic land model. Global Biogeochemical Cycles, 24(1), GB1001.

    Article  Google Scholar 

  • Ginzburg, A. S., and N. N. Zavalishin, 2008: Dynamics of a closed low-parameter compartment model of the global carbon cycle. Izvestiya, Atmospheric and Oceanic Physics, 44(6), 684–700.

    Article  Google Scholar 

  • Goldewijk, K. K., 2001: Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles, 15(2), 417–434.

    Article  Google Scholar 

  • Golubyatnikov, L. L., and E. A. Denisenko, 2001: Modeling the values of net primary production for the zonal vegetation in European Russia. Biology Bulletin, 28(3), 293–300, doi: 10.1023/A:1016648722322.

    Article  Google Scholar 

  • Gu, L., D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J. J. Michalsky, S. P. Urbanski, and T. A. Boden, 2003: Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299(5615), 2035–2038.

    Article  Google Scholar 

  • Hall, F. G., G. Collatz, S. Los, E. Brown de Colstoun, and D. Landis, Eds., 2005: ISLSCP Initiative II. NASA, Greenbelt Md., digital media.

  • Handorf, D., V. K. Petoukhov, K. Dethloff, A. V. Eliseev, A. Weisheimer, and I. I. Mokhov, 1999: Decadal climate variability in a coupled atmosphere-ocean climate model of moderate complexity. J. Geophys. Res., 104(D22), 27253–27275.

    Article  Google Scholar 

  • Horowitz, L. W., 2006: Past, present, and future concentrations of tropospheric ozone and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet deposition. J. Geophys. Res., 111(D22), D22211.

    Article  Google Scholar 

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds., 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge/New York, 892pp.

    Google Scholar 

  • Houghton, R. A., J. E. Hobbie, J. M. Melillo, B. Moore, B. J. Peterson, G. R. Shaver, and G. M. Woodwell, 1983: Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere. Ecological Monographs, 53(3), 235–262.

    Article  Google Scholar 

  • Houlton, B. Z., Y.-P. Wang, P. M. Vitousek, and C. B. Field, 2008: A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454(7202), 327–330.

    Article  Google Scholar 

  • Hurtt, G. C., and Coauthors, 2009: Harmonization of global land-use scenarios for the period 1500–2100 for IPCC-AR5. Integrated Land Ecosystem-Atmosphere Processes Study (iLEAPS) Newsletter, (7), 6–8.

  • Izrael, Yu. A., 2005: An efficient way to regulate global climate is the main goal of the climate problem solution. Russian Meteorology and Hydrology, 30(10), 1–4.

    Google Scholar 

  • Jain, A., X. Yang, H. Kheshgi, A. D. McGuire, W. Post, and D. Kicklighter, 2009: Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors. Global Biogeochemical Cycles, 23(4), GB4028.

    Article  Google Scholar 

  • Jobbágy, E. G., and R. B. Jackson, 2000: The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–486.

    Article  Google Scholar 

  • Jones, C. D., and P. M. Cox, 2001: Constraints on the temperature sensitivity of global soil respiration from the observed interannual variability in atmospheric CO2. Atmos. Sci. Lett., 2(1–4), 166–172.

    Article  Google Scholar 

  • Jones, C. D., P. M. Cox, and C. Huntingford, 2006: Climate-carbon cycle feedbacks under stabilisation: Uncertainty and observational constraints. Tellus, 58B(5), 603–613.

    Google Scholar 

  • Keeling, C. D., J. F. S. Chine, and T. P. Whorf, 1996: Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146–149.

    Article  Google Scholar 

  • Krakauer, N. Y., and J. T. Randerson, 2003: Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings. Global Biogeochemical Cycles, 17(4), 1118.

    Article  Google Scholar 

  • Lenton, T. M., and Coauthors, 2006: Millennial timescale carbon cycle and climate change in an efficient Earth system model. Climate Dyn., 26(7–8), 687–711.

    Article  Google Scholar 

  • Lewis, S. L., and Coauthous, 2009: Increasing carbon storage in intact African tropical forests. Nature, 457(7232), 1003–1006.

    Article  Google Scholar 

  • Luyssaert, S., and Coauthors, 2007: CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13(12), 2509–2537.

    Article  Google Scholar 

  • MacFarling Meure, C., D. Etheridge, C. Trudinger, P. Steele, R. Langenfelds, T. van Ommen, A. Smith, and J. Elkins, 2006: Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Res. Lett., 33(14), L14810.

    Article  Google Scholar 

  • Marland, G., T. A. Boden, and R. J. Andres, 2005: Global, regional, and national CO2 emissions. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U. S. Department of Energy, Oak Ridge, Tenn.

  • Matthews, H. D., A. J. Weaver, and K. J. Meissner, 2005: Terrestrial carbon cycle dynamics under recent and future climate change. J. Climate, 18(10), 1609–1628.

    Article  Google Scholar 

  • Matthews, H. D., A. J. Weaver, K. J. Meissner, N. P. Gillett, and M. Eby, 2004: Natural and anthropogenic climate change: Incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Climate Dyn., 22(5), 461–479.

    Article  Google Scholar 

  • Millero, F. J., 1995: Thermodynamics of carbon dioxide system in the ocean. Geochimica et Cosmochimica Acta, 59(4), 661–677.

    Article  Google Scholar 

  • Mokhov, I. I., and A. V Eliseev, 2008: Explaining the eventual transient saturation of climate-carbon cycle feedback. Carbon Balance Management, 3(4), doi: 10.1186/1750-0680-3-4.

  • Mokhov, I. I., and Coauthors, 2005: Climate changes and their assessment based on the IAP RAS global model simulations. Doklady Earth Sciences, 402(4), 591–595.

    Google Scholar 

  • Mokhov, I. I., A. V. Eliseev, and A. A. Karpenko, 2006: Sensitivity of the IAP RAS Global Climatic Model with an interactive carbon cycle to anthropogenic influence. Doklady Earth Sciences, 407(3), 424–428.

    Article  Google Scholar 

  • Mokhov, I. I., A. V. Eliseev, and A. A. Karpenko, 2008: Decadal-to-centennial scale climate-carbon cycle interactions from global climate models simulations forced by anthropogenic emissions. Climate Change Reseacrh Trends, L. N. Peretz, Ed., Nova Sci. Publ., Hauppauge, NY, 217–241.

    Google Scholar 

  • Monserud, R. A., and R. Leemans, 1992: Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62(4), 275–293.

    Article  Google Scholar 

  • Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running, 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625), 1560–1563.

    Article  Google Scholar 

  • Olofsson, J., and T. Hickler, 2008: Effects of human land-use on the global carbon cycle during the last 6,000 years. Veg. Hist. Archeobot., 17(5), 605–615.

    Article  Google Scholar 

  • Olson, J. S., J. A. Watts, and L. A. Allison, 1985: Major world ecosystem complexes ranked by carbon in live vegetation. Technical Report NDP-017, Carbon Dioxide Information Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Petoukhov, V., and Coauthour, 2005: EMIC intercomparison project (EMIP-CO2): Comparative analysis of EMIC simulations of current climate and equilibrium and transient reponses to atmospheric CO2 doubling. Climate Dyn., 25(4), 363–385.

    Article  Google Scholar 

  • Petoukhov, V. K., I. I. Mokhov, A. V. Eliseev, and V. A. Semenov, 1998: The IAP RAS Global Climate Model. Dialogue-MSU, Moscow.

    Google Scholar 

  • Piao, S., P. Ciais, P. Friedlingstein, N. de Noblet-Ducoudré, P. Cadule, N. Viovy, and T. Tao Wang, 2009: Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical Cycles, 23(4), GB4026.

    Article  Google Scholar 

  • Pongratz, J., C. H. Reick, T. Raddatz, and M. Claussen, 2009: Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Global Biogeochemical Cycles, 23(4), GB4001.

    Article  Google Scholar 

  • Robertson, A., and Coauthors, 2001: Hypothesized climate forcing time series for the last 500 years. J. Geophys. Res., 106(D14), 14783–14804.

    Article  Google Scholar 

  • Robock, A., 2008: 20 reasons why geoengineering may be a bad idea. Bull. Atmos. Sci., 64(2), 14–18.

    Google Scholar 

  • Roderick, M. L., G. D. Farquhar, S. L. Berry, and I. R. Noble, 2001: On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia, 129(1), 21–30.

    Article  Google Scholar 

  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367–371.

    Article  Google Scholar 

  • Schultz, M. G., and Coauthors, 2008: Global wildland fire emissions from 1960 to 2000. Global Biogeochemical Cycles, 22(2), GB2002.

    Article  Google Scholar 

  • Sokolov, A. P., D. W. Kicklighter, J. M. Melillo, B. S. Felzer, C. A. Schlosser, and T. W. Cronin, 2008: Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J. Climate, 21(15), 3776–3796.

    Article  Google Scholar 

  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. LeRoy Miller, and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge/New York.

    Google Scholar 

  • Strassmann, K. M., F. Joos, and G. Fischer, 2008: Simulating effects of land use changes on carbon fluxes: Past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus, 60B(4), 583–603.

    Google Scholar 

  • Svirezhev, Yu. M., V. Brovkin, W. von Bloh, H. J. Schellnhuber, and G. Petschel-Held, 1999: Optimisation of reduction of global CO2 emission based on a simple model of the carbon cycle. Environmental Modeling & Assessment, 4(1), 23–33.

    Article  Google Scholar 

  • Svirezhev, Yu. M., and W. von Bloh, 1997: Climate, vegetation, and global carbon cycle: The simplest zero-dimensional model. Ecological Modelling, 101, 79–95.

    Article  Google Scholar 

  • Svirezhev, Yu. M., and W. von Bloh, 1998: A zero-dimensional climate-vegetation model containing global carbon and hydrological cycle. Ecological Modelling, 106, 119–127.

    Article  Google Scholar 

  • Tarko, A. M., 2005: Anthropogenic Changes of Global Biospheric Processes. Mathematical Modelling. Fizmatlit, Moscow, 232pp. (in Russian)

    Google Scholar 

  • Thonicke, K., S. Venevsky, S. Sitch, and W. Cramer, 2001: The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetaion Model. Global Ecology and Biogeography, 10(6), 661–677.

    Article  Google Scholar 

  • Thornton, P. E., J.-F. Lamarque, N. A. Rosenbloom, and N. M. Mahowald, 2007: Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles, 21(4), GB4018.

    Article  Google Scholar 

  • Volodin, E. M., 2007: Atmosphere-ocean general circulation model with the carbon cycle. Izvestiya, Atmospheric and Oceanic Physics, 43(3), 266–280.

    Article  Google Scholar 

  • Volodin, E. M., 2008: Methane cycle in the INM RAS climate model. Izvestiya, Atmospheric and Oceanic Physics, 44(2), 153–159.

    Article  Google Scholar 

  • Walker, S. J., R. F. Weiss, and P. K. Salameh, 2000: Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11, CFC-12, CFC-113 and carbon tetrachloride. J. Geophys. Res., 105(C6), 14285–14296.

    Article  Google Scholar 

  • Wang, Y.-M., J. Lean, and N. R. Sheeley, 2005: Modeling the Sun’s magnetic field and irradiance since. The Astrophysical Journal, 625(1), 522–538.

    Article  Google Scholar 

  • Wang, Z., R.-M. Hu, L. A. Mysak, J.-P. Blanchet, and J. Feng, 2004: A parameterization of solar energy disposition in the climate system. Atmos.-Ocean, 42(2), 113–125.

    Article  Google Scholar 

  • Weaver, A. J., and Coauthors, 2001: The UVic Earth system climate model: Model description, climatology, and applications to past, present and future climates. Atmos.-Ocean, 39(4), 361–428.

    Article  Google Scholar 

  • Wigley, T. M. L., 2006: A combined mitigation/geoengineering approach to climate stabilization. Science, 314(5798), 452–454.

    Article  Google Scholar 

  • Williamson, M. S., T. M. Lenton, J. G. Shepherd, and N. R. Edwards, 2006: An efficient numerical terrestrial scheme (ENTS) for Earth system modelling. Ecological Modelling, 198, 362–374.

    Article  Google Scholar 

  • Zaehle, S., P. Friedlingstein, and A. D. Friend, 2010a: Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys. Res. Lett., 37(1), L01401.

    Article  Google Scholar 

  • Zaehle, S., A. D. Friend, P. Friedlingstein, F. Dentener, P. Peylin, and M. Schulz, 2010b: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. role of the nitrogen cycle in the historical terrestrial carbon balance. Global Biogeochemical Cycles, 24(1), GB1006.

    Article  Google Scholar 

  • Zhao, M., S. W. Running, and R. R. Nemani, 2006: Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J. Geophys. Res., 111(G1), G01002.

    Article  Google Scholar 

  • Zickfeld, K., M. Eby, and A. J. Weaver, 2008: Carbon-cycle feedbacks of changes in the Atlantic meridional overturning circulation under future atmospheric CO2. Global Biogeochemical Cycles, 22(3), GB3024.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Eliseev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliseev, A.V., Mokhov, I.I. Uncertainty of climate response to natural and anthropogenic forcings due to different land use scenarios. Adv. Atmos. Sci. 28, 1215–1232 (2011). https://doi.org/10.1007/s00376-010-0054-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-010-0054-8

Key words

Navigation