Skip to main content

Advertisement

Log in

Boosted-Dose Yttrium-90 Radiation Segmentectomy or Lobectomy for Hepatocellular Carcinoma Refractory to Prior Transarterial Embolization or Chemoembolization: A Single Institution Retrospective Case Series

  • ClinicaL Investigation
  • Interventional Oncology
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess the tumor response rates and liver toxicity of boosted-dose transarterial radioembolization (TARE) for treatment of hepatocellular carcinoma (HCC) refractory to previous transarterial embolization (TAE) and/or chemoembolization (TACE).

Materials and Methods

All patients were identified who had HCC treated between 2017 and 2020 that had been refractory to prior TAE or TACE, then treated with boosted-dose segmental or lobar TARE. Tumor response was assessed by multiphasic CT or MRI using localized mRECIST imaging criteria and serological alpha-fetoprotein levels at three and six months after TARE, if available. Liver toxicity was evaluated using serial serological liver function tests, platelet counts, and clinical Child–Pugh and MELD scores.

Results

Twenty-four patients met inclusion criteria. Mean age was 68.7 years (54–89); 8 were females. Three (12.5%) patients had Barcelona Clinical Liver Cancer stage A, 4 (16.7%) stage B, and 17 (70.8%) stage C disease. Three months after TARE, 52% of patients had a complete response and 33% had a partial response. Mean AFP decreased from 33.2 ng/mL at baseline to 17 ng/mL at 3 months (p = 0.782). The median MELD-Na score increased from 11 at baseline to 16 at 6 months post-TARE (p = 0.044); the mean Child–Pugh score rose from 5 at baseline to 6 at 3 months post-TARE (p < 0.01).

Conclusion

Boosted-dose TARE resulted in statistically significant favorable tumor responses by imaging criteria in 85% of patients previously refractory to TAE or TACE. TARE resulted in transient but acceptable deterioration of liver function and clinical scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention (CDC). Hepatocellular carcinoma—United States, 2001–2006. MMWR Morb Mortal Wkly Rep. 2010;59(17):517–20.

    Google Scholar 

  2. Lanza E, Muglia R, Bolengo I, et al. Survival analysis of 230 patients with unresectable hepatocellular carcinoma treated with bland transarterial embolization. PLoS ONE. 2020;15(1):e0227711. https://doi.org/10.1371/journal.pone.0227711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Facciorusso A, Licinio R, Muscatiello N, Di Leo A, Barone M. Transarterial chemoembolization: evidences from the literature and applications in hepatocellular carcinoma patients. World J Hepatol. 2015;7(16):2009–19. https://doi.org/10.4254/wjh.v7.i16.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tang Q, Huang W, Liang J, Xue J. Efficacy and safety of transarterial chemoembolization in elderly patients of advanced hepatocellular carcinoma with portal vein tumor thrombus: a retrospective study. Front Oncol. 2021;11:646410. https://doi.org/10.3389/fonc.2021.646410.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Forner A, Ayuso C, Varela M, et al. Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumors reliable? Cancer. 2009;115(3):616–23. https://doi.org/10.1002/cncr.24050.

    Article  PubMed  Google Scholar 

  6. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. 2009;8(20):3274–84. https://doi.org/10.4161/cc.8.20.9701.

    Article  CAS  PubMed  Google Scholar 

  7. Salem R, Gabr A, Riaz A, et al. Institutional decision to adopt Y90 as primary treatment for hepatocellular carcinoma informed by a 1000-patient 15-year experience. Hepatology. 2018;68(4):1429–40. https://doi.org/10.1002/hep.29691.

    Article  PubMed  Google Scholar 

  8. Kallini JR, Gabr A, Salem R, Lewandowski RJ. Transarterial radioembolization with Yttrium-90 for the treatment of hepatocellular carcinoma. Adv Ther. 2016;33(5):699–714. https://doi.org/10.1007/s12325-016-0324-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chernyak V, Fowler KJ, Kamaya A, et al. Liver Imaging Reporting and Data System (LI-RADS) Version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology. 2018;289(3):816–30. https://doi.org/10.1148/radiol.2018181494.

    Article  PubMed  Google Scholar 

  10. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30(1):52–60. https://doi.org/10.1055/s-0030-1247132.

    Article  CAS  PubMed  Google Scholar 

  11. Luca A, Angermayr B, Bertolini G, et al. An integrated MELD model including serum sodium and age improves the prediction of early mortality in patients with cirrhosis. Liver Transplant. 2007;13(8):1174–80. https://doi.org/10.1002/lt.21197.

    Article  Google Scholar 

  12. Kamath PS, Kim WR. Advanced Liver Disease Study Group. The model for end-stage liver disease (MELD). Hepatology. 2007;45(3):797–805. https://doi.org/10.1002/hep.21563.

    Article  PubMed  Google Scholar 

  13. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60(8):646–9. https://doi.org/10.1002/bjs.1800600817.

    Article  CAS  PubMed  Google Scholar 

  14. Johnson PJ, Berhane S, Kagebayashi C, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol. 2015;33(6):550–8. https://doi.org/10.1200/JCO.2014.57.9151.

    Article  PubMed  Google Scholar 

  15. Khalilzadeh O, Baerlocher MO, Shyn PB, et al. Proposal of a new adverse event classification by the Society of Interventional Radiology Standards of Practice Committee. J Vasc Interv Radiol. 2017;28(10):1432-1437.e3. https://doi.org/10.1016/j.jvir.2017.06.019.

    Article  PubMed  Google Scholar 

  16. Srinivas SM, Natarajan N, Kuroiwa J, et al. Determination of radiation absorbed dose to primary liver tumors and normal liver tissue using post-radioembolization (90)Y PET. Front Oncol. 2014;4:255. https://doi.org/10.3389/fonc.2014.00255.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Salem R, Padia SA, Lam M, et al. Clinical and dosimetric considerations for Y90: recommendations from an international multidisciplinary working group. Eur J Nucl Med Mol Imaging. 2019;46(8):1695–704. https://doi.org/10.1007/s00259-019-04340-5.

    Article  PubMed  Google Scholar 

  18. Klompenhouwer EG, Dresen RC, Verslype C, et al. Safety and efficacy of transarterial radioembolisation in patients with intermediate or advanced stage hepatocellular carcinoma refractory to chemoembolisation. Cardiovasc Interv Radiol. 2017;40(12):1882–90. https://doi.org/10.1007/s00270-017-1739-5.

    Article  Google Scholar 

  19. Sarwar A, Kudla A, Weinstein JL, et al. Yttrium-90 radioembolization using MIRD dosimetry with resin microspheres. Eur Radiol. 2021;31(3):1316–24. https://doi.org/10.1007/s00330-020-07231-8.

    Article  CAS  PubMed  Google Scholar 

  20. Lam MG, Abdelmaksoud MH, Chang DT, et al. Safety of 90Y radioembolization in patients who have undergone previous external beam radiation therapy. Int J Radiat Oncol Biol Phys. 2013;87(2):323–9. https://doi.org/10.1016/j.ijrobp.2013.05.041.

    Article  PubMed  Google Scholar 

  21. Johnson GE, Monsky WL, Valji K, Hippe DS, Padia SA. Yttrium-90 radioembolization as a salvage treatment following chemoembolization for hepatocellular carcinoma. J Vasc Interv Radiol. 2016;27(8):1123–9. https://doi.org/10.1016/j.jvir.2016.03.046.

    Article  PubMed  Google Scholar 

  22. Salem R, Lewandowski RJ, Mulcahy MF, et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology. 2010;138(1):52–64. https://doi.org/10.1053/j.gastro.2009.09.006.

    Article  CAS  PubMed  Google Scholar 

  23. Mazzaferro V, Sposito C, Bhoori S, et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: a phase 2 study. Hepatology. 2013;57(5):1826–37. https://doi.org/10.1002/hep.26014.

    Article  CAS  PubMed  Google Scholar 

  24. Vilgrain V, Pereira H, Assenat E, et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol. 2017;18(12):1624–36. https://doi.org/10.1016/S1470-2045(17)30683-6.

    Article  CAS  PubMed  Google Scholar 

  25. Chow PKH, Gandhi M, Tan SB, et al. SIRveNIB: selective internal radiation therapy versus sorafenib in Asia-Pacific patients with hepatocellular carcinoma. J Clin Oncol. 2018;36(19):1913–21. https://doi.org/10.1200/JCO.2017.76.0892.

    Article  CAS  PubMed  Google Scholar 

  26. Katsanos K, Kitrou P, Spiliopoulos S, Maroulis I, Petsas T, Karnabatidis D. Comparative effectiveness of different transarterial embolization therapies alone or in combination with local ablative or adjuvant systemic treatments for unresectable hepatocellular carcinoma: a network meta-analysis of randomized controlled trials. PLoS ONE. 2017;12(9):e0184597. https://doi.org/10.1371/journal.pone.0184597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maeda N, Osuga K, Mikami K, et al. Angiographic evaluation of hepatic arterial damage after transarterial chemoembolization for hepatocellular carcinoma. Radiat Med. 2008;26(4):206–12. https://doi.org/10.1007/s11604-007-0216-5.

    Article  PubMed  Google Scholar 

  28. Belli L, Magistretti G, Puricelli GP, Damiani G, Colombo E, Cornalba GP. Arteritis following intra-arterial chemotherapy for liver tumors. Eur Radiol. 1997;7(3):323–6. https://doi.org/10.1007/s003300050159.

    Article  CAS  PubMed  Google Scholar 

  29. Geschwind JF, Ramsey DE, Cleffken B, et al. Transcatheter arterial chemoembolization of liver tumors: effects of embolization protocol on injectable volume of chemotherapy and subsequent arterial patency. Cardiovasc Interv Radiol. 2003;26(2):111–7. https://doi.org/10.1007/s00270-002-2524-6.

    Article  Google Scholar 

Download references

Funding

This study was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary T. Berman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

For this type of study formal consent is not required.

Informed Consent

This study has obtained IRB approval from UCSD IRB # 210122. The need for informed consent was waived.

Consent for Publication

All authors have reviewed this manuscript and support its submission. The need for informed consent from those involved in the study was waived due to its retrospective nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivas, S., Rose, S.C., Al Jammal, O. et al. Boosted-Dose Yttrium-90 Radiation Segmentectomy or Lobectomy for Hepatocellular Carcinoma Refractory to Prior Transarterial Embolization or Chemoembolization: A Single Institution Retrospective Case Series. Cardiovasc Intervent Radiol 46, 460–469 (2023). https://doi.org/10.1007/s00270-023-03388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-023-03388-z

Keywords

Navigation