Skip to main content
Log in

A late Permian archosauriform from Xinjiang shows evidence of parasagittal posture

  • Original Article
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract 

Archosaurs diversified and became dominant during the Mesozoic Era, but their earliest relatives (non-archosaurian archosauromorphs) were already scarcely present in the late Permian. Here we describe a new species of non-archosaurian archosauriform from the upper Permian of Xinjiang, China. Preserved as a partial hindlimb, it possesses a few derived features shared with other archosauriforms, including a much stouter tibia than fibula, a longer metatarsal III than metatarsal IV, and a hooked metatarsal V. Phylogenetic analysis confirmed the new taxon to be a non-archosaurian archosauriform. The morphology of the knee, crus, and pes shows traits that are commonly related with a parasagittal posture, including an entirely proximo-distal articulation of the femur and fibula, the slender and closely spaced tibia and fibula, and a mesaxonic foot with a reduced fifth toe. The new taxon shows that the parasagittal posture evolved before the end-Permian Mass Extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References 

  • Angielczyk KD, Sullivan C (2008) Diictodon feliceps (Owen, 1876), a dicynodont (Therapsida, Anomodontia) species with a Pangaean distribution. J Vertebr Paleontol 28(3):788–802

    Article  Google Scholar 

  • Bakker RT (1971) Dinosaur physiology and the origin of mammals. Evolution 636–658

  • Bernardi M, Klein H et al (2015) The origin and early radiation of archosauriforms: integrating the skeletal and footprint record. PLoS ONE 10(6):e0128449

    Article  Google Scholar 

  • Bonaparte JF (1984) Locomotion in rauisuchid thecodonts. J Vertebr Paleontol 3(4):210–218

    Article  Google Scholar 

  • Borsuk-Bialynicka M (2018). Diversity of diapsid fifth metatarsals from the Lower Triassic karst deposits of Czatkowice, southern Poland—functional and phylogenetic implications. Acta Palaeontologica Polonica 63(3)

  • Brinkman D (1980) The hind limb step cycle of Caiman sclerops and the mechanics of the crocodile tarsus and metatarsus. Can J Zool 58(12):2187–2200

    Article  Google Scholar 

  • Brusatte SL, Benton MJ et al (2008) Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321(5895):1485–1488

    Article  CAS  Google Scholar 

  • Charig AJ (1972) The evolution of the archosaur pelvis and hindlimb: an explanation in functional terms. Stud Vertebrate Evol 121–155

  • Cheng Z, Wu S, et al (1996) The Permian–Triassic sequences in the southern margin of the Junggar basin and the Turpan basin, Xinjiang, China 30th International Geologic Congress, Field Trip Guidebook

  • Colbert EH (1987) The Triassic reptile Prolacerta in Antarctica. American Museum novitates; no. 2882

  • Cruickshank A (1978) The pes of Erythrosuchus africanus Broom. Zool J Linn Soc 62(2):161–177

    Article  Google Scholar 

  • Cruickshank A (1979) The ankle joint in some early archosaurs. S Afr J Sci 75(4):168

    Google Scholar 

  • Demuth OE, Rayfield EJ, et al (2020) 3D hindlimb joint mobility of the stem-archosaur Euparkeria capensis with implications for postural evolution within Archosauria. Scientific reports 10(1). https://doi.org/10.1038/s41598-020-70175-y

  • De-Oliveira TM, Pinheiro FL et al (2020) A new archosauromorph from South America provides insights on the early diversification of tanystropheids. PLoS ONE 15(4):e0230890

    Article  CAS  Google Scholar 

  • Dilkes DW (1998) The Early Triassic rhynchosaur Mesosuchus browni and the interrelationships of basal archosauromorph reptiles. Philos Trans R Soc Lond B Biol Sci 353(1368):501–541

    Article  Google Scholar 

  • Dilkes D, Sues H-D (2009) Redescription and phylogenetic relationships of Doswellia kaltenbachi (Diapsida: Archosauriformes) from the Upper Triassic of Virginia. J Vertebr Paleontol 29(1):58–79

    Article  Google Scholar 

  • Ernesto M, Demarco PN et al (2020) Age constraints on the Paleozoic Yaguarí-Buena Vista succession from Uruguay: paleomagnetic and paleontologic information. J S Am Earth Sci 98:102489. https://doi.org/10.1016/j.jsames.2019.102489

    Article  Google Scholar 

  • Evans SE (1981) The postcranial skeleton of the Lower Jurassic eosuchian Gephyrosaurus bridensis. Zool J Linn Soc 73(1):81–116

    Article  Google Scholar 

  • Ewer RF (1965) The anatomy of the thecodont reptile Euparkeria capensis Broom. Philos Trans R Soc Lond B Biol Sci 248(751):379–435

    Article  Google Scholar 

  • Ezcurra MD (2016) The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 4:e1778. https://doi.org/10.7717/peerj.1778

    Article  CAS  Google Scholar 

  • Ezcurra MD, Sues H-D (2021) A re-assessment of the osteology and phylogenetic relationships of the enigmatic, large-headed reptile Sphodrosaurus pennsylvanicus (Late Triassic, Pennsylvania, USA) indicates archosauriform affinities. J Syst Paleontol 19(24):1643–1677

    Article  Google Scholar 

  • Ezcurra MD, Butler RJ et al (2013) ‘Proterosuchia’: the origin and early history of Archosauriformes. Geol Soc, London, Special Publ 379(1):9–33. https://doi.org/10.1144/sp379.11

    Article  Google Scholar 

  • Ezcurra MD, Scheyer TM et al (2014) The origin and early evolution of Sauria: reassessing the Permian saurian fossil record and the timing of the crocodile-lizard divergence. PLoS ONE 9(2):e89165. https://doi.org/10.1371/journal.pone.0089165

    Article  CAS  Google Scholar 

  • Ezcurra MD, Velozo P et al (2015) Early archosauromorph remains from the Permo-Triassic Buena Vista Formation of north-eastern Uruguay. PeerJ 3:e776. https://doi.org/10.7717/peerj.776

    Article  Google Scholar 

  • Ford DP, Benson RB (2020) The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae. Nat Ecol Evol 4(1):57–65

    Article  Google Scholar 

  • Fraser NC (1988) The osteology and relationships of Clevosaurus (Reptilia: Sphenodontida). Philos Trans Royal Soc London b, Biol Sci 321(1204):125–178

    Article  Google Scholar 

  • Gastaldo RA, Kamo SL, et al (2020) The base of the Lystrosaurus Assemblage Zone, Karoo Basin, predates the end-Permian marine extinction. Nat Commun 11(1). https://doi.org/10.1038/s41467-020-15243-7

  • Gatesy SM (1991) Hind limb movements of the American alligator (Alligator mississippiensis) and postural grades. J Zool 224(4):577–588

    Article  Google Scholar 

  • Gauthier J (1984) A cladistic analysis of the higher taxonomic categories of the Diapsida. Ph. D. dissertation, University of California, Berkeley

  • Gauthier J (1986) Saurischian monophyly and the origin of birds. Mem Calif Acad Sci 8:1–55

  • Gauthier J, Kluge AG et al (1988) Amniote phylogeny and the importance of fossils. Cladistics 4(2):105–209

    Article  Google Scholar 

  • Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24(5):774–786. https://doi.org/10.1111/j.1096-0031.2008.00217.x

    Article  Google Scholar 

  • Goodrich ES (1916) On the classification of the Reptilia. Proc Royal Soc London Series b, Containing Papers Biol Character 89(615):261–276

    Article  Google Scholar 

  • Gottmann-Quesada A, Sander PM (2009) A redescription of the early archosauromorph Protorosaurus speneri Meyer, 1832, and its phylogenetic relationships. Palaeontogr Abt A 287(4–6):123–220. https://doi.org/10.1127/pala/287/2009/123

    Article  Google Scholar 

  • Gower DJ (1996) The tarsus of erythrosuchid archosaurs, and implications for early diapsid phylogeny. Zool J Linn Soc 116(4):347–375

    Article  Google Scholar 

  • Harris JM and Carroll RL (1977). Kenyasaurus, a new eosuchian reptile from the Early Triassic of Kenya. J Paleontol 139–149

  • Hutchinson JR (2006) The evolution of locomotion in archosaurs. CR Palevol 5(3–4):519–530

    Article  Google Scholar 

  • Hutchinson JR, Gatesy SM (2000) Adductors, abductors, and the evolution of archosaur locomotion. Paleobiology 26(4):734–751

    Article  Google Scholar 

  • Kammerer CF, Angielczyk KD et al (2011) A comprehensive taxonomic revision of Dicynodon (Therapsida, Anomodontia) and its implications for dicynodont phylogeny, biogeography, and biostratigraphy. J Vertebr Paleontol 31(sup1):1–158

    Article  Google Scholar 

  • Kemp DF, Kemp TS et al (1982) Mammal-like reptiles and the origin of mammals. Academic Press

    Google Scholar 

  • Kubo TAI, Benton MJ (2009) Tetrapod postural shift estimated from Permian and Triassic trackways. Palaeontology 52(5):1029–1037. https://doi.org/10.1111/j.1475-4983.2009.00897.x

    Article  Google Scholar 

  • Lee M (1997) The evolution of the reptilian hindfoot and the homology of the hooked fifth metatarsal. J Evol Biol 10(2):253–263

    Article  Google Scholar 

  • Li C, Wu X-C et al (2012) A new archosaur (Diapsida, Archosauriformes) from the marine Triassic of China. J Vertebr Paleontol 32(5):1064–1081. https://doi.org/10.1080/02724634.2012.694383

    Article  Google Scholar 

  • Li C, Wu X-C et al (2016) A new armored archosauriform (Diapsida: Archosauromorpha) from the marine Middle Triassic of China, with implications for the diverse life styles of archosauriforms prior to the diversification of Archosauria. Sci Nat 103(11–12). https://doi.org/10.1007/s00114-016-1418-4

  • Li J, Wu X et al (2008) The Chinese fossil reptiles and their kin. Science Press Beijing

  • Liu J, Abdala F (2017) Therocephalian and chroniosuchian (Reptiliomorpha) from the Permo-Triassic transitional Guodikeng Formation of the Dalongkou Section, Jimsar, Xinjiang, China. Vertebrata PalAsiatica 55:24–40

    Google Scholar 

  • Lucas S (2001) Chinese fossil vertebrates. Columbia University Press, New York, p 375

    Google Scholar 

  • Maidment SC, Sennikov AG et al (2020) The postcranial skeleton of the erythrosuchid archosauriform Garjainia prima from the Early Triassic of European Russia. R Soc Open Sci 7(12):201089

  • Marchetti L, Ceoloni P et al (2020) The Lopingian tetrapod ichnoassociation from Italy, a key for the understanding of low-latitude faunas before the end-Permian crisis. Tetrapod Ichnol Italy: the State of the Art Journal of Mediterranean Earth Sciences 12:61–81

    Google Scholar 

  • Nesbitt SJ (2011) The early evolution of archosaurs: relationships and the origin of major clades. Bull Am Mus Nat Hist 352:1–292. https://doi.org/10.1206/352.1

    Article  Google Scholar 

  • Osborn HF (1903) The reptilian subclasses Diapsida and Synapsida and the early history of the Diaptosauria. Mem Am Mus Nat Hist 1:449–507

    Google Scholar 

  • Parrish JM (1986) Locomotor adaptations in the hindlimb and pelvis of the Thecodontia. University of Col, Museum

    Google Scholar 

  • Parrish JM (1987) The origin of crocodilian locomotion. Paleobiology 13(4):396–414

    Article  Google Scholar 

  • Peabody FE (1952). Petrolacosaurus kansensis Lane, a Pennsylvanian reptile from Kansas

  • Pinheiro FL, França MAG, et al (2016) An exceptional fossil skull from South America and the origins of the archosauriform radiation. Scientific reports 6(1). https://doi.org/10.1038/srep22817

  • Reisz RR, Berman DS et al (1984) The anatomy and relationships of the Lower Permian reptile Araeoscelis. J Vertebr Paleontol 4(1):57–67

    Article  Google Scholar 

  • Reynoso V-H (1998) Huehuecuetzpalli mixtecus gen. et sp. nov: a basal squamate (Reptilia) from the Early Cretaceous of Tepexi de Rodríguez, Central México. Phil Trans R Soc Lond B 353(1367):477–500

    Article  Google Scholar 

  • Robinson P (1975) The functions of the hooked fifth metatarsal in lepidosaurian reptiles. Colloq Int C N R S 218:461–483

    Google Scholar 

  • Romer AS (1956) Osteology of the reptiles. The University of Chicago Press, Chicago & London

    Google Scholar 

  • Sereno PC (1991) Basal archosaurs: phylogenetic relationships and functional implications. J Vertebr Paleontol 11(S4):1–53

    Google Scholar 

  • Smith RM, Evans SE (1996) New material of Youngina: evidence of juvenile aggregation in Permian diapsid reptiles. Palaeontology 39(2):289–304

    Google Scholar 

  • Sookias RB (2016) The relationships of the Euparkeriidae and the rise of Archosauria. R Soc Open Sci 3(3):150674. https://doi.org/10.1098/rsos.150674

  • Spiekman SN, Fraser NC et al (2021) A new phylogenetic hypothesis of Tanystropheidae (Diapsida, Archosauromorpha) and other “protorosaurs”, and its implications for the early evolution of stem archosaurs. PeerJ 9:e11143

    Article  Google Scholar 

  • Spiekman SNF (2018) A new specimen of Prolacerta broomi from the lower Fremouw Formation (Early Triassic) of Antarctica, its biogeographical implications and a taxonomic revision. Scientific reports 8(1). https://doi.org/10.1038/s41598-018-36499-6

  • Trotteyn MJ, Ezcurra MD (2014) Osteology of Pseudochampsa ischigualastensis gen et comb nov(Archosauriformes: Proterochampsidae) from the early Late Triassic Ischigualasto Formation of northwestern Argentina. PloS one 9(11):e111388

    Article  Google Scholar 

  • Trotteyn MJ, Ezcurra MD (2020) Redescription of the holotype of Chanaresuchus bonapartei Romer, 1971 (Archosauriformes: Proterochampsidae) from the Upper Triassic rocks of the Chañares Formation of north-western Argentina. J Syst Paleontol 18(17):1415–1443. https://doi.org/10.1080/14772019.2020.1768167

    Article  Google Scholar 

  • Trotteyn MJ, Martínez RN et al (2012) A new proterochampsid Chanaresuchus ischigualastensis (Diapsida, Archosauriformes) in the early Late Triassic Ischigualasto Formation. Argentina Journal of Vertebrate Paleontology 32(2):485–489. https://doi.org/10.1080/02724634.2012.645975

    Article  Google Scholar 

  • Viglietti PA, Benson RB, et al (2021) Evidence from South Africa for a protracted end-Permian extinction on land. Proc Natl Acad Sci 118(17)

  • von Huene FRF (1946) Die grossen Stämme der Tetrapoden in den geologischen Zeiten. Biol Zent Bl 65:268–275

    Google Scholar 

  • Wan M-L, Yang W et al (2020) Palaeocupressinoxylon uniseriale n gen. n. sp., a gymnospermous wood from the upper Permian of Central Taodonggou, southern Bogda Mountains, northwestern China. Palaeoworld 29(1):117–125. https://doi.org/10.1016/j.palwor.2019.06.002

    Article  Google Scholar 

  • Wu X-C, Russell AP (2001) Redescription of Turfanosuchus dabanensis (Archosauriformes) and new information on its phylogenetic relationships. J Vertebr Paleontol 21(1):40–50

    Article  Google Scholar 

  • Yang W, Wan M, et al (2021) Paleoenvironmental and paleoclimatic evolution and cyclo-and chrono-stratigraphy of upper Permian-Lower Triassic fluvial-lacustrine deposits in Bogda Mountains, NW China–implications for diachronous plant evolution across the Permian-Triassic boundary. Earth-Sci Rev 103741

Download references

Acknowledgements

We thank Lu Li, Yufeng Liu, Xingwen Li, and Xu Xu for the fieldwork, Fu Hualin and Yong Wu for preparing the specimen, and Jingsong Shi and Yemao Hou for CT-scanning the specimen.

Funding

This work is funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB26000000), and the International Partnership Program of Chinese Academy of Sciences (132311KYSB20190010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianye Chen.

Additional information

Communicated by: Robert R Reisz

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Liu, J. A late Permian archosauriform from Xinjiang shows evidence of parasagittal posture. Sci Nat 110, 1 (2023). https://doi.org/10.1007/s00114-022-01823-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-022-01823-8

Keywords

Navigation