Skip to main content
Log in

Maternally inherited architecture in tertiary leaf beetles: paleoichnology of cryptocephaline fecal cases in Dominican and Baltic amber

  • SHORT COMMUNICATION
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Complex ethological adaptations and intraspecific interactions leave few fossil traces. We document three Dominican (20 million years old [myo]) and Baltic (45 myo) amber fossils that exhibit firm evidence of highly integrated interactions between mothers and offspring in the diverse camptosomate lineage of beetles (Chrysomelidae, leaf beetles). As in contemporary species, these hard cases were initially constructed by mothers, then inherited and retained by offspring, which then elaborate this protective domicile with an unusual but economical building material, their feces. The three fossils are classified in the Subfamily Cryptocephalinae; two are classified in the tribe Chlamisini based on morphological evidence—the flattened head lacking a sharp keel and long legs with simple recurved untoothed claws. These diagnostic features are not clearly visible in the third specimen to permit more refined identification. These fossils provide more precise paleontological dating of tribal nodes within the cryptocephaline radiation of leaf beetles. These fossils are the first and earliest evidence of mother–offspring interaction, building behavior, and fecal recycling in Camptosomata beetles and of inheritance of architectural structures in beetles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Bokerman WC (1964) Notes on the biology of Poropleura cuprea (Klug, 1928) (Coleoptera, Chrysomelidae, Chlamisinae) (14th contribution). An Acad Brasil Ciên 36:165–172

    Google Scholar 

  • Brown CG, Funk DJ (2005) Aspects of the natural history of Neochlamisus (Coleoptera: Chrysomelidae): fecal-case associated life history and behavior, with a method for studying the construction of insect defensive structures. Ann Entomol Soc Am 98(5):711–725

    Article  Google Scholar 

  • Chaboo CS (2007) Biology and phylogeny of the Cassidinae Gyllenhal sensu lato (tortoise and leaf-mining beetles) (Coleoptera: Chrysomelidae). Bull Am Mus Nat Hist 305:1–250

    Article  Google Scholar 

  • Chaboo CS, Brown CG, Funk D (2008) Fecal case architecture in the gibbosus species group of Neochlamisus Karren (Coleoptera: Chrysomelidae: Cryptocephalinae: Chlamisini). Zool J Linn Soc 152:315–351

    Article  Google Scholar 

  • Cockerell TDA (1891) Case-making coleopterous larvae. Entomol Monthly Mag 2(2nd Ser):190–191

    Google Scholar 

  • Crowson RA (1955) The natural classification of the families of Coleoptera. Nathaniel Lloyd, London

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • Engel MS (2001) A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera). Bull Am Mus Nat Hist 259:1–192

    Article  Google Scholar 

  • Erber D (1969) Beitrag zur entwicklungs-biologie mitteleeurop äischer Clytrinae und Cryptocephalinen (Coleoptera, Chrysomelidae). Zool Jahrb Abt Syst Ökol Geo Tier 96:453–477

    Google Scholar 

  • Erber D (1988) Biology of Camptostomata Clytrinae–Cryptocephalinae–Chlamisinae–Lamprostomatinae. In: Jolivet P, Petitpierre E, Hsiao TH (eds) Biology of the Chrysomelidae. Kluwer, Dordrecht, pp 513–552

    Google Scholar 

  • Fiori G (1950) Contributi alla conoscenza morfologia ed etologica dei Coleotteri. Boll Lab Entomol Bolog 18:182–196

    Google Scholar 

  • Flinte V, Macêdo MV (2004) Biology and seasonality of Fulcidax monstrosa (F.) (Chrysomelidae: Chlamisinae). Coleop Bull 58(4):457–465

    Article  Google Scholar 

  • Gómez-Zurita J, Hunt T, Kopliku F, Vogler FP (2007) Recalibrated tree of leaf beetles (Chrysomelidae) indicates independent diversification of angiosperms and their insect herbivores. PloS 2(4):e360. doi:10.1371/journal.pone.0000360

    Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Hilker M (1994) Egg deposition and protection of eggs in Chrysomelidae. In: Jolivet PH, Cox ML, Petitpierre E (eds) Novel aspects of the biology of Chrysomelidae. Kluwer, Dordrecht, pp 263–276

    Google Scholar 

  • Hislop R (1871) Note on the larva-case, etc. of Clythra 4-punctata. Entomol Mon Mag 8:269–270

    Google Scholar 

  • Hunt T, Johannes B, Levkanicova Z, Papadopoulou A, St. John O, Wild R, Hammond PM, Ahrens D, Balke M, Caterino MS, Gómez-Zurita J, Rivera I, Barraclough TG, Bocakova M, Bocak L, Vogler AP (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916

    Article  PubMed  CAS  Google Scholar 

  • Iturralde-Vinent MA, MacPhee RDE (1996) Age and paleogeographical origin of Dominican amber. Science 273:1850–1852

    Article  CAS  Google Scholar 

  • Iturralde-Vinent MA, MacPhee RDE (1999) Paleogeography of the Caribbean region: implications for Cenozoic biogeography. Bull Amer Mus Nat Hist 238:1–95

    Google Scholar 

  • Jolivet PHA, Hawkeswood TJ (1995) Host-plants of Chrysomelidae of the world. Backhuys, Leiden

    Google Scholar 

  • Kasap H, Crowson RH (1976) On systematic relations of Oomorphus concolor (Sturm) (Col., Chrysomelidae), with descriptions of its larva and of an aberrant Cryptocephaline larva from Australia. J Natl Hist 10:99–112

    Article  Google Scholar 

  • Kimoto S, Takizawa H (1997) Leaf beetles (Chrysomelidae) of Taiwan. Tokai University Press, Tokyo 581 pp

    Google Scholar 

  • Lawrence JF, Britton EB (1991) Coleoptera (Beetles). In: Naumann ID (ed) Insects of Australia, 2nd edn. Melbourne University Press, Melbourne, 1: pp. 3–32

  • Lawson FA (1976) Egg and larval case formation by Pachybrachis bivittatus. Ann Entomol Soc Am 69(5):942–944

    Google Scholar 

  • Lawson FA (1991) Chrysomelidae. In: Stehr FW (ed) Immature insects, Kendall/Hunt, Dubuque, 2: pp. 568–585

  • LeSage L (1982) The immature stages of Exema canadensis Pierce (Coleoptera: Chrysomelidae). Coleop Bull 36(2):318–327

    Google Scholar 

  • LeSage L, Stiefel VL (1996) Biology and immature stages of the North American clytrines Anomoea laticlavia (Forster) and A. flavokansiensis Moldenke. In: Jolivet PHA and ML Cox (eds) Chrysomelidae studies, general studies, SPB, Amsterdam, 3: pp. 217-238

  • Lorenz K (1935) Der Kumpan in der Umwelt des Vogels Der Artgenosse als auslösendes Moment sozialer Verhaltungsweisen. J Ornithol 83(2–3):137–213

    Article  Google Scholar 

  • Reid CAM (1990) Systematics of the Australian Cryptocephalinae (Coleoptera: Chrysomelidae). Unpublished Ph.D. thesis, Australian National University, Canberra, pp. i-xviii + 887

  • Reu WF Jr, Del-Claro K (2005) Natural history and biology of Chlamisus minax Lacordaire (Chrysomelidae: Chlamisinae). Neotrop Entomol 34(3):357–362

    Google Scholar 

  • Root RB, Messina FJ (1983) Defensive adaptations and natural enemies of a case-bearing beetle, Exema canadensis (Coleoptera: Chrysomelidae). Psyche 90:67–80

    Article  Google Scholar 

  • Santiago-Blay JA (1994) Paleaontology of leaf beetles. In: Jolivet PH, ML Cox and E. Petitpierre (eds) Novel aspects of the biology of Chrysomelidae, Dordrecht: Kluwer, Series Entomologica, 50:1–68

  • Santiago-Blay JA, Craig PR (1994) Preliminary analysis of chrysomelid paleodiversity, with a new record and a new species from Dominican amber (early to middle Miocene). In: Cox ML (ed) Advances in Chrysomelidae Biology, Backhuys, Leiden, 1:17–24

  • Santiago-Blay JA, Poinar GO Jr, and Craig PR (1996) Dominican and Mexican amber chrysomelids, with descriptions of two new species. In: Jolivet PH, ML Cox (eds) Chrysomelidae biology: classification, phylogeney and genetics, SPB, Amsterdam,1:413–424

  • Schöller M (1999) Field studies of Cryptocephalinae biology. In: Cox ML (ed) Advances in Chrysomelidae biology 1. Backhuys, Leiden, pp 421–436

    Google Scholar 

  • Selman, BJ (1962) Remarkable new chrysomeloids found in the nests of arboreal ants in Tanganyika (Coleoptera: Clytridae and Cryptocephalidae). Ann Mag Nat Hist, Ser 13 5:295–299

    Google Scholar 

  • Spruyt FJ (1925) Observations on the egg-laying habits of Saxinis saucia LeC. (Coleoptera-Chrysomelidae). Pan-Pac Entomol 1(4):176–178

    Google Scholar 

  • Wood GW (1966) Life history and control of a casebearer, Chlamisus cribripennis (Coleoptera, Chrysomelidae), on blueberry. J Econ Entomol 59(4):823–825

    Google Scholar 

Download references

Acknowledgments

We thank D.A. Grimaldi and A.S. Konstantinov for bringing the Dominican and Baltic amber specimens respectively to our attention; and Christopher Brown and Vivian Flinte for use of two images. Partial support was provided by National Science Foundation grant DEB-0741745 (to S. Chatzimanolis and M.S. Engel). This is a contribution of the Division of Entomology, University of Kansas Natural History Museum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline S. Chaboo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaboo, C.S., Engel, M.S. & Chamorro-Lacayo, M.L. Maternally inherited architecture in tertiary leaf beetles: paleoichnology of cryptocephaline fecal cases in Dominican and Baltic amber. Naturwissenschaften 96, 1121–1126 (2009). https://doi.org/10.1007/s00114-009-0573-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-009-0573-2

Keywords

Navigation