Skip to main content

Advertisement

Log in

Age-related changes of the binding of [3H]SA4503 to sigma1 receptors in the rat brain

  • Short Communication
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

We have recently developed 1-([3-O-methyl-11C]3,4-dimethoxyphenethyl)-4-(3-phenylpropyl) piperazine ([11C]SA4503) as a selective radioligand for mapping sigma1 receptors in the brain by positron emission tomography (PET). In the present short communication we evaluated the agerelated changes of the binding of this ligand to sigma1 receptors in Fisher-344 rats (1.5-, 6-, 12-, and 24-month-old) by thein vitro binding assay. We also measured the binding of [3H](+)-pentazocine to sigma1 receptors and the binding of [3H]1,3-di-O-tolylguanidine to sigma2 receptors, which are current standard methods. The specific binding of the three radioligands increased age-dependently. Both Kd and Bmax values of the 24-month-old rats for each radioligand were significantly higher than those of the young rats (1.5- and 6-month-old). The increased numbers of both sigma1 and sigma2 receptor subtypes in the aged rats compensate for the lowered affinity, and rather enhanced the radioligand-receptor binding. The results contrast strikingly with the age-dependent decrease in the dopaminergic, cholinergic and glutamatergic receptors that are reported to be correlated with the sigma receptors, and indicate that a PET study with [11C]SA4503 to evaluate the aging process in humans would be of great interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Junien JL, Leonard BE. Drugs acting on sigma and phencyclidine receptors: A review of their nature, function and possible therapeutic importance.Clin Neuropharmacol 1989; 12: 353–374.

    Article  CAS  PubMed  Google Scholar 

  2. Su TP. Delineating biochemical and functional properties of sigma receptors: emerging concepts.Crit Rev Neurobiol 1993; 7: 187��203.

    CAS  PubMed  Google Scholar 

  3. Patrick SL, Walker JM, Perkel JM, Lockwood M, Patrick RL. Increases in rat striatal extracellular dopamine and vacuous chewing produced by two sigma receptor ligands.Eur J Pharmacol 1993; 231: 243–249.

    Article  CAS  PubMed  Google Scholar 

  4. Matsuno K, Senda T, Kobayashi T, Mita S. Involvement of σ1 receptor in (+)-N-allynormetazocine—stimulated hippocampal colinergic function in rats.Brain Res 1995; 690: 200–206.

    Article  CAS  PubMed  Google Scholar 

  5. Gudelsky GA. Effects of σ receptor ligands on the extracellular concentration of dopamane in the striatum and prefrontal cortex of the rat.Eur J Pharmacol 1995; 286: 223–228.

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi T, Matsuno K, Mita S. Regional differences of the effect of σ receptor ligands acetylcholine release in the rat brain.J Neural Transm 1996; 103: 661–669.

    Article  CAS  PubMed  Google Scholar 

  7. Kobayashi T, Matsuno K, Murai M, Mita S. σ1 receptor subtype is involved in the facilitation of cortical dopaminergic transmission in the rat brain.Neurochem Res 1997; 22: 1105–1109.

    Article  CAS  PubMed  Google Scholar 

  8. Buyukuysal RL, Ulus IH, Kiran BK. Age-related alterations in pre-synaptic and receptor-mediated cholinergic function in rat brain.Neurochem Res 1998; 23: 719–726.

    Article  CAS  PubMed  Google Scholar 

  9. Gudelsky GA. Biphasic effect of sigma receptor ligands on the extracellular concentration of dopamine in the striatum of the rat.J Neural Transm 1999; 106: 849–856.

    Article  CAS  PubMed  Google Scholar 

  10. Siniscalchi A, Cristofori P, Veratti E. Influence ofN-allylnormetazocine on acetylcholine release from brain slices: involvement muscarinic receptors.Naunyn-Schmeideberg's Arch Pharmacol 1987; 336: 425–429.

    Article  CAS  Google Scholar 

  11. Walker JM, Bowen WD, Walker FO, Matsumoto RR, de Costa B, Rice KC. Sigma receptors: biology and function.Pharmacol Rev 1990; 42: 355–402.

    CAS  PubMed  Google Scholar 

  12. Kawamura K, Ishiwata K, Tajima H, Ishii S, Matsuno K, Homma Y, et al.In vivo evaluation of [11C]SA4503 as a PET ligand for mapping CNS sigma1 receptors.Nucl Med Biol 2000; 27: 255–261.

    Article  CAS  PubMed  Google Scholar 

  13. Kawamura K, Ishiwata K, Shimada Y, Kimura Y, Kobayashi T, Matsuno K, et al. Preclinical evaluation of [11C]SA4503: radiation dosimetry,in vivo selectivity and PET imaging of sigma1 receptors in the cat brain.Ann Nucl Med 2000; 14: 285–292.

    Article  CAS  PubMed  Google Scholar 

  14. Ishiwata K, Kobayashi T, Kawamura K, Matsuno K, Senda M. [11C]Raclopride binding was reducedin vivo by sigma1 receptor ligand SA4503 in the mouse brain, while [11C]SA4503 binding was not by raclopride.Nucl Med Biol 2001; 28: 787–792.

    Article  CAS  PubMed  Google Scholar 

  15. Ishiwata K, Tsukada H, Kawamura K, Kimura Y, Nishiyama S, Kobayashi T, et al. Mapping of CNS sigma1 receptors in the conscious monkey: a preliminary PET study with [11C]SA4503.Synapse 2001; 40: 235–237.

    Article  CAS  PubMed  Google Scholar 

  16. Ishii K, Ishiwata K, Kimura Y, Kawamura K, Oda K, Senda M. Mapping of sigma1 receptors in living human brain.Neuroimage 2001; 6 (Part 2 of 2 parts): S984.

    Article  Google Scholar 

  17. Ohyama N, Ishiwata K, Ishii K, Mishina M, Kitamura S, Kawamura K, et al. The first demonstration of sigma1 receptors with Alzheimer's disease using PET and a newly developed ligand:11C-SA4503,J Nucl Med 43; 2002: 243P.

  18. Dewey SL, Volkow ND, Logan J, MacGregor RR, Fowler JS, Schlyer DJ, et al. Age-related decreases in muscarinic cholinergic receptor binding in the human brain measured with positron emission tomography (PET).J Neurosci Res 1990; 27: 569–575.

    Article  CAS  PubMed  Google Scholar 

  19. Rinne JO, Hietala J, Ruotsalainen U, Sako E, Laihinen A, Nagren K, et al. Decrease in human striatal dopamine D2 receptor density with age: a PET study with [11C]raclopride.J Cereb Blood Flow Metab 1993; 13: 310–314.

    CAS  PubMed  Google Scholar 

  20. Wang Y, Chan GL, Holden JE, Dobko T, Mak E, Schulzer M, et al. Age-dependent decline of dopamine D1 receptors in human brain: a PET study.Synapse 1998; 30: 56–61.

    Article  CAS  PubMed  Google Scholar 

  21. Meng SZ, Ozawa Y, Itoh M, Takashima S. Developmental and age-related change of dopamine transporter, and dopamine D1 and D2 receptors in human basal ganglia.Brain Res 1999; 843: 136–144.

    Article  CAS  PubMed  Google Scholar 

  22. Kaasien V, Vilkman H, Hietala J, Någren K, Helenius H, Olssen H, et al. Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain.Neurobiol Aging 2000; 21: 683–688.

    Article  Google Scholar 

  23. Kawamura K, Kimura Y, Tsukada H, Kobayashi T, Nishiyama S, Kakiuchi T, et al. An increase of sigma1 receptors in the aged monkey brain.Neurobiol Aging (in press).

  24. Wallace DR, Mactutus CF, Booze RM. Sigma binding sites identified by [3H]DTG are elevated in aged Fischer-344 x Brown Norway (F1) rats.Synapse 2000; 35: 311–313.

    Article  CAS  PubMed  Google Scholar 

  25. Majewska MD, Parameswaran S, Vu T, London ED. Divergent ontogeny of sigma and phencyclidine binding sites in the rat brain.Brain Res Dev Brain Res 1989; 47: 13–18.

    Article  CAS  PubMed  Google Scholar 

  26. Matsumoto RR, Bowen WD, Walker JM. Age-related differences in the sensitivity of rats to a selective sigma ligand.Brain Res 1989; 504: 145–148.

    Article  CAS  PubMed  Google Scholar 

  27. Matsuno K, Nakazawa M, Okamoto K, Kawashima Y, Mita S. Binding properties of SA4503 a novel and selective σ1 receptor agonist.Eur J Pharmacol 1996; 306: 271–279.

    Article  CAS  PubMed  Google Scholar 

  28. Whittemore ER, Ilyin VI, Woodward RM. Antagonism ofN-methyl-d-aspartate receptors by a site ligands: potency, subtype-selectivity and mechanisms of inhibition.J Pharmacol Exp Ther 1997; 282: 326–338.

    CAS  PubMed  Google Scholar 

  29. Bowen WD, Hellewell SB, McGrarry KA. Evidence for a multisite model of the rat brain σ receptor.Eur J Pharmacol 1989; 163: 309–318.

    Article  CAS  PubMed  Google Scholar 

  30. Giardino L. Right-left asymmetry of D1- and D2-receptor density is lost in the basal ganglia of old rats.Brain Res 1996; 720: 235–238.

    Article  CAS  PubMed  Google Scholar 

  31. Muller WE, Stoll S, Scheuer K, Meichelbock A. The function of the NMDA-receptor during normal brain aging.J Neural Transm Suppl 1994; 44: 145–158.

    CAS  PubMed  Google Scholar 

  32. Smith TD, Gllagher M, Lesline FM. Cholinergic binding sites in rat brain: analysis by age and cognitive status.Neurobiol Aging 1995; 16: 161–173.

    Article  CAS  PubMed  Google Scholar 

  33. Bouchard P, Quirion R. [3H]1,3-di(2-tolyl)guanidine and [3H](+)pentazocine binding sites in the rat brain: autoradiographic visualization of the putative sigma1 and sigma2 receptor subtypes.Neuroscience 1997; 76: 467–477.

    Article  CAS  PubMed  Google Scholar 

  34. Kornhuber J, Schoppmeyer K, Bendig C, Riederer P. Characterization of [3H]-pentazocine binding sites in post-mortem human frontal cortex.J Neural Transm 1996; 103: 45–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiichi Ishiwata.

Additional information

M's Science Co.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishiwata, K., Kobayashi, T., Kawamura, K. et al. Age-related changes of the binding of [3H]SA4503 to sigma1 receptors in the rat brain. Ann Nucl Med 17, 73–77 (2003). https://doi.org/10.1007/BF02988264

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02988264

Key words

Navigation