Skip to main content
Log in

Can we understand time scales of solar activity?

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The dynamo theory of the solar cycle faces numerous difficulties with an explanation of the observed behavior of sunspot activity. In particular, there is an essential irregularity in the sequence of 11(22)-year cycles. In this paper we want to show how the complicated long-term evolution of solar activity can be understood within the framework of a simple model demonstrating low-dimensional chaotic behavior. According to this description we are able to give a definition for the periods of low activity (Global Minima), to describe how the transition to (from) a Global Minimum occurs and to show the role of the 11(22)-year cycle and its phase catastrophe. The explanations of the origin of the Gleissberg cycle and thousand-year variations of solar activity are given. In summary, the independence of the proposed scenario from the particular choice of model is shown. Thus one can formulate dynamics in the language of generalized instabilities which can aid the search for the underlying physical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aimanova, G. K. and Maharenko, N. G.: 1988,Astron. Tsirk No. 1533 (in Russian).

  • Berge, P., Pomeau, Y., and Vidal, C.: 1984,Order within Chaos, John Wiley, New York.

    Google Scholar 

  • Blinov, A. V. and Kremliovskij, M. N.: 1992,Radiocarbon 34(2), 207.

    Google Scholar 

  • Broomhead, D. S. and King, G. P.: 1987,Physica 20D, 217.

    Google Scholar 

  • Cattaneo, F. and Vainshtein, S. I.: 1991,Astrophys. J. 376, L21.

    Google Scholar 

  • Gruzinov, A. V. and Diamond, P. H.: 1994,Phys. Rev. Letters, in press.

  • Kremlevskii, M. N., Blinov, A. V., and Cheryakov, T. B.: 1992,Soviet Astron. Letters 18(6), 423.

    Google Scholar 

  • Kurths, J.: 1987, in M. Farkas (ed.),Proc. Int. Conf. Nonlinear Osccillations, Budapest, p. 664.

  • Mundt, M. D., Maguire, W. B., and Chase, R. R. P.: 1991,J. Geophys. Res. 96, 1705.

    Google Scholar 

  • Ostriakov, V. M. and Usoskin, I. G.: 1990,Solar Phys. 127, 405.

    Google Scholar 

  • Packard, N., Crutchfield, J. P., Farmer, J. D., and Shaw, R. S.: 1980,Phys. Rev. Letters 45, 712.

    Google Scholar 

  • Ruelle, D.: 1990,Proc. Roy. Soc. London 427A, 241.

    Google Scholar 

  • Stuiver, M. and Braziunas, T. F.: 1988, in F. R. Stephenson and A. V. Wolfendale (eds.),Secular Solar and Geomagnetic Variations in the Last 10 000 Years, Kluwer Academic Publishers, Dordrecht, Holland, p. 245.

    Google Scholar 

  • Suess, H. E.: 1978,Radiocarbon 20 (1), 1.

    Google Scholar 

  • Takens, F.: 1981,Lecture Notes in Mathematics 898, Springer-Verlag, p. 366.

    Google Scholar 

  • Waldmeier, M.: 1961,The Sunspot Activity in the Years 1610–1960, Schulthess and Co. AG, Zürich.

    Google Scholar 

  • Weiss, N. O., Cattaneo, F., and Jones, C. A.: 1984,Geophys. Astrophys. Fluid Dyn. 30, 305.

    Google Scholar 

  • Zeldovich, Ya. B. and Ruzmaikin, A. A.: 1983,Soviet Sci. Rev. 2, 333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kremliovsky, M.N. Can we understand time scales of solar activity?. Sol Phys 151, 351–370 (1994). https://doi.org/10.1007/BF00679081

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00679081

Keywords

Navigation