Skip to main content

Active Galactic Nuclei with High-Resolution X-Ray Spectroscopy

  • Chapter
  • First Online:
High-Resolution X-ray Spectroscopy

Abstract

The imminent launch of XRISM will usher in an era of high-resolution X-ray spectroscopy. For active galactic nuclei (AGN) this is an exciting epoch that is full of massive potential for uncovering the ins and outs of supermassive black hole accretion. In this work, we review AGN research topics that are certain to advance in the coming years with XRISM and prognosticate the possibilities with Athena and Arcus. Specifically, our discussion focuses on: (i) the relatively slow moving ionised winds known as warm absorbers and obscurers; (ii) the iron emitting from different regions of the inner and outer disc, broad line region, and torus; and (iii) the ultrafast outflows that may be the key to understanding AGN feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Eddington luminosity, \(L_{Edd}=1.26\times 10^{38} M_{BH}/M_{\odot }\mathrm erg~s^{-1}\), is the maximum luminosity a system can have such that the gravitational infall of ionised hydrogen gas is exactly balanced by the outward radiation pressure.

  2. 2.

    In this section, all illustrations are produced using the SPEX package [107].

  3. 3.

    The reflection fraction is the ratio of reflected flux to primary flux.

References

  1. J.T. Allen, P.C. Hewett, N. Maddox, G.T. Richards, V. Belokurov, MNRAS 410, 860–884 (2011). https://doi.org/10.1111/j.1365-2966.2010.17489.x. [arXiv:1007.3991]

  2. W.N. Alston, A.C. Fabian, E. Kara et al., NatAs 4, 597–602 (2020). https://doi.org/10.1038/s41550-019-1002-x. [arXiv:2001.06454]

  3. C. Andonie, F.E. Bauer, R. Carraro et al., A &A 664, A46 (2022). https://doi.org/10.1051/0004-6361/202142473. [arXiv:2204.09469]

  4. R. Antonucci, ARA &A 31, 473–521 (1993). https://doi.org/10.1146/annurev.aa.31.090193.002353

  5. N. Arav, C. Chamberlain, G.A. Kriss et al., A &A 577, A37 (2015). https://doi.org/10.1051/0004-6361/20142530210.48550/arXiv.1411.2157. [arXiv:1411.2157]

  6. N. Arav, M. Moe, E. Costantini et al., ApJ 681, 954–964 (2008). https://doi.org/10.1086/588651. [arXiv:0807.0228]

  7. S.A. Balbus, J.F. Hawley, ApJ 376, 214 (1991). https://doi.org/10.1086/170270

  8. J. Baldwin, G. Ferland, K. Korista, D. Verner, ApJL 455, L119 (1995). https://doi.org/10.1086/309827. [arXiv:astro-ph/9510080]

  9. D.R. Ballantyne, MNRAS 491, 3553–3561 (2020). https://doi.org/10.1093/mnras/stz3294. [arXiv:1911.10029]

  10. D.R. Ballantyne, R.R. Ross, A.C. Fabian, MNRAS 327, 10–22 (2001). https://doi.org/10.1046/j.1365-8711.2001.04432.x. [arXiv:astro-ph/0102040]

  11. C. Bambi, L.W. Brenneman, T. Dauser et al., SSRv 217, 65 (2021). https://doi.org/10.1007/s11214-021-00841-8. [arXiv:2011.04792]

  12. W. Bambynek, B. Crasemann, R.W. Fink et al., Rev. Mod. Phys. 44, 716–813 (1972)

    Article  ADS  Google Scholar 

  13. D. Barret, T. Lam Trong, J.-W. den Herder, et al., SPIE 10699, 106991G (2018). https://doi.org/10.1117/12.2312409. [arXiv:1807.06092]

  14. M.A. Bautista, C. Mendoza, T.R. Kallman, P. Palmeri, A &A 403, 339–355 (2003). https://doi.org/10.1051/0004-6361:20030367. [arXiv:astro-ph/0207323]

  15. M.A. Bautista, C. Mendoza, T.R. Kallman, P. Palmeri, A &A 418, 1171–1178 (2004). https://doi.org/10.1051/0004-6361:20034198

  16. M.C. Begelman, cbhg.symp 374 (2004), [arXiv:astro-ph/0303040]

  17. M.C. Begelman, C.F. McKee, G.A. Shields, ApJ 271, 70–88 (1983). https://doi.org/10.1086/161178

  18. E. Behar, ApJ 703, 1346–1351 (2009). https://doi.org/10.1088/0004-637X/703/2/1346. [arXiv:0908.0539]

  19. E. Behar, M. Sako, S.M. Kahn, ApJ 563, 497–504 (2001). https://doi.org/10.1086/323966. [arXiv:astro-ph/0109314]

  20. M.C. Bentz, P.R. Williams, T. Treu, ApJ 934, 168 (2022). https://doi.org/10.3847/1538-4357/ac7c0a. [arXiv:2206.03513]

  21. S. Bianchi, M. Guainazzi, G. Matt, N. Fonseca Bonilla, & G. Ponti, A &A 495, 421-430 (2009). https://doi.org/10.1051/0004-6361:200810620. [arXiv:0811.1126]

  22. R.D. Blandford, D.G. Payne, MNRAS 199, 883–903 (1982). https://doi.org/10.1093/mnras/199.4.883

  23. J. Bland-Hawthorn, S.L. Lumsden, G.M. Voit, G.N. Cecil, J.C. Weisheit, Ap &SS 248, 177–190 (1997). https://doi.org/10.1023/A:1000525513140. [arXiv:astro-ph/9706211]

  24. A.J. Blustin, M.J. Page, S.V. Fuerst, G. Branduardi-Raymont, C.E. Ashton, A &A 431, 111–125 (2005). https://doi.org/10.1051/0004-6361:20041775. [arXiv:astro-ph/0411297]

  25. R. Boissay-Malaquin, A. Danehkar, H.L. Marshall, M.A. Nowak, ApJ 873, 29 (2019). https://doi.org/10.3847/1538-4357/ab0082. [arXiv:1901.06641]

  26. T. Boller, W. N. Brandt, & H. Fink, A &A 305, 53 (1996). https://doi.org/10.48550/arXiv.astro-ph/9504093. [arXiv:astro-ph/9504093]

  27. W.N. Brandt, S. Mathur, M. Elvis, MNRAS 285, L25–L30 (1997). https://doi.org/10.1093/mnras/285.3.L2510.48550/arXiv.astro-ph/9703100. [arXiv:astro-ph/9703100]

  28. H. Brunner, T. Liu, G. Lamer et al., A &A 661, A1 (2022). https://doi.org/10.1051/0004-6361/202141266. [arXiv:2106.14517]

  29. M. Cappi, AN 327, 1012 (2006). https://doi.org/10.1002/asna.200610639. [arXiv:astro-ph/0610117]

  30. J.I. Castor, D.C. Abbott, R.I. Klein, ApJ 195, 157–174 (1975). https://doi.org/10.1086/153315

  31. S. Chakravorty, A.K. Kembhavi, M. Elvis, G. Ferland, MNRAS 393, 83–98 (2009). https://doi.org/10.1111/j.1365-2966.2008.14249.x10.48550/arXiv.0811.2404. [arXiv:0811.2404]

  32. S. Chakravorty, R. Misra, M. Elvis, A.K. Kembhavi, G. Ferland, MNRAS 422, 637–651 (2012). https://doi.org/10.1111/j.1365-2966.2012.20641.x10.48550/arXiv.1201.5435. [arXiv:1201.5435]

  33. G. Chartas, W.N. Brandt, S.C. Gallagher, G.P. Garmire, ApJ 579, 169–175 (2002). https://doi.org/10.1086/342744. [arXiv:astro-ph/0207196]

  34. J. Contopoulos, R.V.E. Lovelace, ApJ 429, 139 (1994). https://doi.org/10.1086/174307

  35. E. Costantini, SSRv 157, 265–277 (2010). https://doi.org/10.1007/s11214-010-9706-310.48550/arXiv.1011.2384. [arXiv:1011.2384]

  36. E. Costantini, J.S. Kaastra, N. Arav et al., A &A 461, 121–134 (2007). https://doi.org/10.1051/0004-6361:20065390. [arXiv:astro-ph/0609385]

  37. E. Costantini, J.S. Kaastra, K. Korista et al., A &A 512, A25 (2010). https://doi.org/10.1051/0004-6361/200912555. [arXiv:1001.2712]

  38. E. Costantini, G. Kriss, J.S. Kaastra et al., A &A 595, A106 (2016). https://doi.org/10.1051/0004-6361/201527956. [arXiv:1606.06579]

  39. E. Costantini, F. Nicastro, A. Fruscione et al., ApJ 544, 283–292 (2000). https://doi.org/10.1086/31720010.48550/arXiv.astro-ph/0007158. [arXiv:astro-ph/0007158]

  40. D.M. Crenshaw, S.B. Kraemer, ApJ 753, 75 (2012). https://doi.org/10.1088/0004-637X/753/1/75. [arXiv:1204.6694]

  41. D.M. Crenshaw, S.B. Kraemer, J.R. Gabel et al., ApJ 594, 116–127 (2003). https://doi.org/10.1086/37679210.48550/arXiv.astro-ph/0305154. [arXiv:astro-ph/0305154]

  42. B. Czerny, M. Nikołajuk, A. Rózańska et al., A &A 412, 317–329 (2003). https://doi.org/10.1051/0004-6361:20031441. [arXiv:astro-ph/0309242]

  43. R.C. Dannen, D. Proga, T.R. Kallman, T. Waters, ApJ 882, 99 (2019). https://doi.org/10.3847/1538-4357/ab340b. [arXiv:1812.01773]

  44. T. Dauser, J. Wilms, C.S. Reynolds, L.W. Brenneman, MNRAS 409, 1534–1540 (2010). https://doi.org/10.1111/j.1365-2966.2010.17393.x. [arXiv:1007.4937]

  45. M. Dehghanian, G.J. Ferland, B.M. Peterson et al., ApJL 882, L30 (2019). https://doi.org/10.3847/2041-8213/ab3d4110.48550/arXiv.1908.07686. [arXiv:1908.07686]

  46. R.G. Detmers, J.S. Kaastra, K.C. Steenbrugge et al., A &A 534, A38 (2011). https://doi.org/10.1051/0004-6361/201116899. [arXiv:1107.0658]

  47. L. Di Gesu, E. Costantini, A &A 594, A88 (2016). https://doi.org/10.1051/0004-6361/20162867010.48550/arXiv.1607.01943. [arXiv:1607.01943]

  48. L. Di Gesu, E. Costantini, N. Arav et al., A &A 556, A94 (2013). https://doi.org/10.1051/0004-6361/201321416. [arXiv:1305.6232]

  49. L. Di Gesu, E. Costantini, J. Ebrero et al., A &A 579, A42 (2015). https://doi.org/10.1051/0004-6361/201525934. [arXiv:1505.02562]

  50. L. Di Gesu, E. Costantini, E. Piconcelli et al., A &A 563, A95 (2014). https://doi.org/10.1051/0004-6361/201322916. [arXiv:1401.5614]

  51. T. Di Matteo, V. Springel, L. Hernquist, Natur 433, 604–607 (2005). https://doi.org/10.1038/nature03335. [arXiv:astro-ph/0502199]

  52. C. Done, M.A. Sobolewska, M. Gierliński, N.J. Schurch, MNRAS 374, L15–L19 (2007). https://doi.org/10.1111/j.1745-3933.2006.00255.x. [arXiv:astro-ph/0610078]

  53. C. Done, R. Tomaru, T. Takahashi, MNRAS 473, 838–848 (2018). https://doi.org/10.1093/mnras/stx2400. [arXiv:1612.09377]

  54. J. Ebrero, V. Domček, G.A. Kriss, J.S. Kaastra, A &A 653, A125 (2021). https://doi.org/10.1051/0004-6361/202040045. [arXiv:2107.05676]

  55. J. Ebrero, G.A. Kriss, J.S. Kaastra, J.C. Ely, A &A 586, A72 (2016). https://doi.org/10.1051/0004-6361/20152749510.48550/arXiv.1511.07169. [arXiv:1511.07169]

  56. D. Edmonds, B. Borguet, N. Arav et al., ApJ 739, 7 (2011). https://doi.org/10.1088/0004-637X/739/1/7

  57. J.E. Everett, ApJ 631, 689–706 (2005). https://doi.org/10.1086/432678. [arXiv:astro-ph/0506321]

  58. A.C. Fabian, ARA &A 50, 455–489 (2012). https://doi.org/10.1146/annurev-astro-081811-125521. [arXiv:1204.4114]

  59. A.C. Fabian, M.J. Rees, L. Stella, N.E. White, MNRAS 238, 729–736 (1989). https://doi.org/10.1093/mnras/238.3.729

  60. A.C. Fabian, C.S. Reynolds, J. Jiang et al., MNRAS 493, 2518–2522 (2020). https://doi.org/10.1093/mnras/staa482. [arXiv:2002.06388]

  61. A.C. Fabian, A. Zoghbi, R.R. Ross et al., Natur 459, 540–542 (2009). https://doi.org/10.1038/nature08007

  62. L. Ferrarese, D. Merritt, ApJL 539, L9–L12 (2000). https://doi.org/10.1086/312838. [arXiv:astro-ph/0006053]

  63. T.C. Fischer, C. Machuca, M.R. Diniz et al., ApJ 834, 30 (2017). https://doi.org/10.3847/1538-4357/834/1/30. [arXiv:1609.08927]

  64. K. Fukumura, M. Dadina, G. Matzeu et al., ApJ 940, 6 (2022). https://doi.org/10.3847/1538-4357/ac9388. [arXiv:2205.08894]

  65. K. Fukumura, D. Kazanas, I. Contopoulos, E. Behar, ApJ 715, 636–650 (2010). https://doi.org/10.1088/0004-637X/715/1/636. [arXiv:0910.3001]

  66. K. Fukumura, D. Kazanas, I. Contopoulos, E. Behar, ApJL 723, L228–L232 (2010). https://doi.org/10.1088/2041-8205/723/2/L228. [arXiv:1009.5644]

  67. K. Fukumura, F. Tombesi, D. Kazanas et al., ApJ 805, 17 (2015). https://doi.org/10.1088/0004-637X/805/1/17. [arXiv:1503.04074]

  68. J.R. Gabel, D.M. Crenshaw, S.B. Kraemer et al., ApJ 583, 178–191 (2003). https://doi.org/10.1086/34509610.48550/arXiv.astro-ph/0209484. [arXiv:astro-ph/0209484]

  69. J.R. Gabel, S.B. Kraemer, D.M. Crenshaw et al., ApJ 631, 741–761 (2005). https://doi.org/10.1086/43268210.48550/arXiv.astro-ph/0506323. [arXiv:astro-ph/0506323]

  70. L.C. Gallo, MNRAS 368, 479–486 (2006). https://doi.org/10.1111/j.1365-2966.2006.10137.x10.48550/arXiv.astro-ph/0602145. [arXiv:astro-ph/0602145]

  71. L. Gallo, rnls.conf 34 (2018). https://doi.org/10.22323/1.328.0034. [arXiv:1807.09838]

  72. L.C. Gallo, A.C. Fabian, MNRAS 418, L59–L63 (2011). https://doi.org/10.1111/j.1745-3933.2011.01143.x. [arXiv:1108.5060]

  73. L.C. Gallo, A.C. Fabian, MNRAS 434, L66–L69 (2013). https://doi.org/10.1093/mnrasl/slt080. [arXiv:1306.3404]

  74. L.C. Gallo, A.G. Gonzalez, S.G.H. Waddell et al., MNRAS 484, 4287–4297 (2019). https://doi.org/10.1093/mnras/stz274. [arXiv:1901.07899]

  75. K. Gebhardt, R. Bender, G. Bower et al., ApJL 539, L13–L16 (2000). https://doi.org/10.1086/312840. [arXiv:astro-ph/0006289]

  76. I.M. George, A.C. Fabian, MNRAS 249, 352 (1991). https://doi.org/10.1093/mnras/249.2.352

  77. I.M. George, T.J. Turner, H. Netzer et al., ApJS 114, 73–120 (1998). https://doi.org/10.1086/31306710.48550/arXiv.astro-ph/9708046. [arXiv:astro-ph/9708046]

  78. M. Giustini, D. Proga, A &A 630, A94 (2019). https://doi.org/10.1051/0004-6361/201833810. [arXiv:1904.07341]

  79. M. Giustini, D. Proga, IAUS 356, 82–86 (2021). https://doi.org/10.1017/S1743921320002628. [arXiv:2002.07564]

  80. J. Gofford, J.N. Reeves, F. Tombesi et al., MNRAS 430, 60–80 (2013). https://doi.org/10.1093/mnras/sts481. [arXiv:1211.5810]

  81. C.J. Grier, P. Martini, L.C. Watson et al., ApJ 773, 90 (2013). https://doi.org/10.1088/0004-637X/773/2/90. [arXiv:1305.2447]

  82. M.F. Gu, T. Holczer, E. Behar, S.M. Kahn, ApJ 641, 1227–1232 (2006). https://doi.org/10.1086/500640. [arXiv:astro-ph/0512410]

  83. M.F. Gu, S.M. Kahn, D.W. Savin et al., ApJ 563, 462–471 (2001). https://doi.org/10.1086/323683

  84. A. Gupta, S. Mathur, Y. Krongold, F. Nicastro, ApJ 772, 66 (2013). https://doi.org/10.1088/0004-637X/772/1/66. [arXiv:1301.6139]

  85. A. Gupta, S. Mathur, Y. Krongold, ApJ 798, 4 (2015). https://doi.org/10.1088/0004-637X/798/1/4. [arXiv:1406.5968]

  86. M. Gupta, M. Sikora, K. Rusinek, G.M. Madejski, MNRAS 480, 2861–2871 (2018). https://doi.org/10.1093/mnras/sty204310.48550/arXiv.1808.07170. [arXiv:1808.07170]

  87. K. Hagino, H. Odaka, C. Done et al., MNRAS 446, 663–676 (2015). https://doi.org/10.1093/mnras/stu2095. [arXiv:1410.1640]

  88. K. Hagino, H. Odaka, C. Done et al., MNRAS 461, 3954–3963 (2016). https://doi.org/10.1093/mnras/stw1579. [arXiv:1509.05645]

  89. J.P. Halpern, ApJ 281, 90–94 (1984). https://doi.org/10.1086/162077

  90. N. Higginbottom, D. Proga, ApJ 807, 107 (2015). https://doi.org/10.1088/0004-637X/807/1/107. [arXiv:1504.03328]

  91. N. Higginbottom, D. Proga, C. Knigge et al., ApJ 789, 19 (2014). https://doi.org/10.1088/0004-637X/789/1/19. [arXiv:1402.1849]

  92. N. Higginbottom, D. Proga, C. Knigge, K.S. Long, ApJ 836, 42 (2017). https://doi.org/10.3847/1538-4357/836/1/42. [arXiv:1612.08996]

  93. Hitomi Collaboration, F. Aharonian, H. Akamatsu, et al., Natur 535, 117-121 (2016). https://doi.org/10.1038/nature18627. [arXiv:1607.04487]

  94. Hitomi Collaboration, F. Aharonian, H. Akamatsu, et al., PASJ 70, 13 (2018). https://doi.org/10.1093/pasj/psx147. [arXiv:1711.06289]

  95. T. Holczer, E. Behar, S. Kaspi, ApJ 663, 799–807 (2007). https://doi.org/10.1086/51841610.48550/arXiv.astro-ph/0703351. [arXiv:astro-ph/0703351]

  96. S.S. Holt, R.F. Mushotzky, R.H. Becker et al., ApJL 241, L13–L17 (1980). https://doi.org/10.1086/183350

  97. P.F. Hopkins, M. Elvis, MNRAS 401, 7–14 (2010). https://doi.org/10.1111/j.1365-2966.2009.15643.x. [arXiv:0904.0649]

  98. Z. Igo, M.L. Parker, G.A. Matzeu et al., MNRAS 493, 1088–1108 (2020). https://doi.org/10.1093/mnras/staa265. [arXiv:2001.08208]

  99. J. Jiang, M.L. Parker, A.C. Fabian et al., MNRAS 477, 3711–3726 (2018). https://doi.org/10.1093/mnras/sty836. [arXiv:1804.00349]

  100. J. Jiang, D.J. Walton, A.C. Fabian, M.L. Parker, MNRAS 483, 2958–2967 (2019). https://doi.org/10.1093/mnras/sty3228. [arXiv:1811.10932]

  101. A. Juráňová, E. Costantini, P. Uttley, MNRAS 510, 4225–4235 (2022). https://doi.org/10.1093/mnras/stab3731. [arXiv:2201.02640]

  102. J.S. Kaastra, J.A.M. Bleeker, A &A 587, A151 (2016). https://doi.org/10.1051/0004-6361/201527395. [arXiv:1601.05309]

  103. J.S. Kaastra, R.G. Detmers, M. Mehdipour et al., A &A 539, A117 (2012). https://doi.org/10.1051/0004-6361/201118161. [arXiv:1201.1855]

  104. J.S. Kaastra, G.A. Kriss, M. Cappi et al., Sci 345, 64–68 (2014). https://doi.org/10.1126/science.125378710.48550/arXiv.1406.5007. [arXiv:1406.5007]

  105. J.S. Kaastra, M. Mehdipour, E. Behar et al., A &A 619, A112 (2018). https://doi.org/10.1051/0004-6361/201832629. [arXiv:1805.03538]

  106. J.S. Kaastra, R. Mewe, D.A. Liedahl, S. Komossa, A.C. Brinkman, A &A 354, L83–L86 (2000). ([arXiv:astro-ph/0002345])

  107. J.S. Kaastra, R. Mewe, & H. Nieuwenhuijzen, uxsa.conf 411–414 (1996)

    Google Scholar 

  108. J.S. Kaastra, A.J.J. Raassen, R. Mewe et al., A &A 428, 57–66 (2004). https://doi.org/10.1051/0004-6361:2004143410.48550/arXiv.astro-ph/0406199. [arXiv:astro-ph/0406199]

  109. J.S. Kaastra, Y. Terashima, T. Kallman, et al., (2014), [arXiv:1412.1171]

  110. T. Kallman, M. Bautista, ApJS 133, 221–253 (2001). https://doi.org/10.1086/319184

  111. E.S. Kammoun, J.M. Miller, M. Koss et al., ApJ 901, 161 (2020). https://doi.org/10.3847/1538-4357/abb29f. [arXiv:2007.02616]

  112. E. Kara, M. Mehdipour, G.A. Kriss et al., ApJ 922, 151 (2021). https://doi.org/10.3847/1538-4357/ac2159. [arXiv:2105.05840]

  113. S. Kaspi, W.N. Brandt, H. Netzer et al., ApJL 535, L17–L20 (2000). https://doi.org/10.1086/312697

  114. S. Kaspi, W.N. Brandt, H. Netzer et al., ApJ 554, 216–232 (2001). https://doi.org/10.1086/321333. [arXiv:astro-ph/0101540]

  115. D. Kazanas, K. Fukumura, E. Behar, I. Contopoulos, C. Shrader, AstRv 7, 92–123 (2012). https://doi.org/10.1080/21672857.2012.11519707. [arXiv:1206.5022]

  116. N. Keshet, E. Behar, ApJ 934, 124 (2022). https://doi.org/10.3847/1538-4357/ac7c6b. [arXiv:2206.15074]

  117. A.R. King, MNRAS 402, 1516–1522 (2010). https://doi.org/10.1111/j.1365-2966.2009.16013.x. [arXiv:0911.1639]

  118. A.R. King, K.A. Pounds, MNRAS 345, 657–659 (2003). https://doi.org/10.1046/j.1365-8711.2003.06980.x. [arXiv:astro-ph/0305541]

  119. A. King, K. Pounds, ARA &A 53, 115–154 (2015). https://doi.org/10.1146/annurev-astro-082214-122316. [arXiv:1503.05206]

  120. C. Knigge, J.A. Woods, J.E. Drew, MNRAS 273, 225–248 (1995). https://doi.org/10.1093/mnras/273.2.225

  121. S. Komossa, NewAR 44, 483–485 (2000). https://doi.org/10.1016/S1387-6473(00)00084-110.48550/arXiv.astro-ph/9810105. [arXiv:astro-ph/9810105]

  122. S. Komossa, S. Mathur, A &A 374, 914–918 (2001). https://doi.org/10.1051/0004-6361:2001081910.48550/arXiv.astro-ph/0106242. [arXiv:astro-ph/0106242]

  123. K.T. Korista, M.A. Bautista, N. Arav et al., ApJ 688, 108–115 (2008). https://doi.org/10.1086/59214010.48550/arXiv.0807.0230. [arXiv:0807.0230]

  124. K. Koyama, Y. Maeda, T. Sonobe et al., PASJ 48, 249–255 (1996). https://doi.org/10.1093/pasj/48.2.249

  125. S.B. Kraemer, F. Tombesi, M.C. Bottorff, ApJ 852, 35 (2018). https://doi.org/10.3847/1538-4357/aa9ce0. [arXiv:1711.07965]

  126. A. Kramida, Y. Ralchenko, J. Reader, NIST AST Team, NIST atomic spectra database version 5.10 (2022)

    Google Scholar 

  127. J.H. Krolik, T.R. Kallman, ApJL 320, L5 (1987). https://doi.org/10.1086/184966

  128. J.H. Krolik, G.A. Kriss, ApJ 447, 512 (1995). https://doi.org/10.1086/17589610.48550/arXiv.astro-ph/9501089. [arXiv:astro-ph/9501089]

  129. J.H. Krolik, C.F. McKee, C.B. Tarter, ApJ 249, 422–442 (1981). https://doi.org/10.1086/159303

  130. Y. Krongold, F. Nicastro, N.S. Brickhouse et al., ApJ 597, 832–850 (2003). https://doi.org/10.1086/378639. [arXiv:astro-ph/0306460]

  131. Y. Krongold, F. Nicastro, M. Elvis et al., ApJ 620, 165–182 (2005). https://doi.org/10.1086/425293. [arXiv:astro-ph/0409490]

  132. Y. Krongold, F. Nicastro, M. Elvis et al., ApJ 659, 1022–1039 (2007). https://doi.org/10.1086/512476

  133. S. Laha, M. Guainazzi, S. Chakravorty, G.C. Dewangan, A.K. Kembhavi, MNRAS 457, 3896–3911 (2016). https://doi.org/10.1093/mnras/stw211. [arXiv:1601.06369]

  134. S. Laha, M. Guainazzi, G.C. Dewangan, S. Chakravorty, A.K. Kembhavi, MNRAS 441, 2613–2643 (2014). https://doi.org/10.1093/mnras/stu669. [arXiv:1404.0899]

  135. A. Laor, ApJ 376, 90 (1991). https://doi.org/10.1086/170257

  136. K.S. Long, C. Knigge, ApJ 579, 725–740 (2002). https://doi.org/10.1086/342879. [arXiv:astro-ph/0208011]

  137. A.L. Longinotti, Y. Krongold, M. Guainazzi et al., ApJL 813, L39 (2015). https://doi.org/10.1088/2041-8205/813/2/L39. [arXiv:1511.01165]

  138. A.L. Longinotti, Y. Krongold, G.A. Kriss et al., ApJ 766, 104 (2013). https://doi.org/10.1088/0004-637X/766/2/10410.48550/arXiv.1301.5463. [arXiv:1301.5463]

  139. P. Magdziarz, O.M. Blaes, A.A. Zdziarski, W.N. Johnson, D.A. Smith, MNRAS 301, 179–192 (1998). https://doi.org/10.1046/j.1365-8711.1998.02015.x

  140. A.G. Markowitz, M. Krumpe, R. Nikutta, MNRAS 439, 1403–1458 (2014). https://doi.org/10.1093/mnras/stt249210.48550/arXiv.1402.2779. [arXiv:1402.2779]

  141. G. Matt, MNRAS 337, 147–150 (2002). https://doi.org/10.1046/j.1365-8711.2002.05890.x. [arXiv:astro-ph/0207615]

  142. G.A. Matzeu, M. Lieu, M.T. Costa et al., MNRAS 515, 6172–6190 (2022). https://doi.org/10.1093/mnras/stac2155 [rXiv:2207.13731]

  143. G.A. Matzeu, J.N. Reeves, V. Braito et al., MNRAS 472, L15–L19 (2017). https://doi.org/10.1093/mnrasl/slx129. [arXiv:1708.03546]

  144. J. Mao, J.S. Kaastra, M. Mehdipour et al., A &A 607, A100 (2017). https://doi.org/10.1051/0004-6361/20173137810.48550/arXiv.1707.09552. [arXiv:1707.09552]

  145. J. Mao, J.S. Kaastra, M. Mehdipour et al., A &A 665, A72 (2022). https://doi.org/10.1051/0004-6361/20214263710.48550/arXiv.2204.06813. [arXiv:2204.06813]

  146. M. Mehdipour, E. Costantini, A &A 625, A25 (2019). https://doi.org/10.1051/0004-6361/20193520510.48550/arXiv.1903.11605. [arXiv:1903.11605]

  147. M. Mehdipour, G.A. Kriss, E. Costantini et al., ApJL 934, L24 (2022). https://doi.org/10.3847/2041-8213/ac822f. [arXiv:2207.09464]

  148. M. Mehdipour, G.A. Kriss, E. Costantini et al., ApJL 934, L24 (2022). https://doi.org/10.3847/2041-8213/ac822f10.48550/arXiv.2207.09464. [arXiv:2207.09464]

  149. C. Mendoza, T.R. Kallman, M.A. Bautista, P. Palmeri, A &A 414, 377–388 (2004). https://doi.org/10.1051/0004-6361:20031621. [arXiv:astro-ph/0306320]

  150. J.M. Miller, ARA &A 45, 441–479 (2007). https://doi.org/10.1146/annurev.astro.45.051806.110555. [arXiv:0705.0540]

  151. J.M. Miller, E. Cackett, A. Zoghbi et al., ApJ 865, 97 (2018). https://doi.org/10.3847/1538-4357/aadbaa. [arXiv:1808.07435]

  152. M. Mizumoto, M. Nomura, C. Done, K. Ohsuga, H. Odaka, MNRAS 503, 1442–1458 (2021). https://doi.org/10.1093/mnras/staa3282. [arXiv:2003.01137]

  153. T. Minezaki, Y. Yoshii, Y. Kobayashi et al., ApJ 886, 150 (2019). https://doi.org/10.3847/1538-4357/ab4f7b. [arXiv:1910.08722]

  154. Y. Morishima, H. Sudou, A. Yamauchi, Y. Taniguchi, & N. Nakai, PASJ..tmp (2022). https://doi.org/10.1093/pasj/psac092. [arXiv:2211.02280]

  155. K.D. Murphy, T. Yaqoob, MNRAS 397, 1549–1562 (2009). https://doi.org/10.1111/j.1365-2966.2009.15025.x. [arXiv:0905.3188]

  156. N. Murray, J. Chiang, S.A. Grossman, G.M. Voit, ApJ 451, 498 (1995). https://doi.org/10.1086/176238

  157. K. Nandra, MNRAS 368, L62–L66 (2006). https://doi.org/10.1111/j.1745-3933.2006.00158.x. [arXiv:astro-ph/0602081]

  158. E. Nardini, J.N. Reeves, J. Gofford et al., Sci 347, 860–863 (2015). https://doi.org/10.1126/science.1259202. [arXiv:1502.06636]

  159. M. Nenkova, M.M. Sirocky, R. Nikutta, Ž Ivezić, M. Elitzur, ApJ 685, 160–180 (2008). https://doi.org/10.1086/590483. [arXiv:0806.0512]

  160. F. Nicastro, F. Fiore, G. Matt, ApJ 517, 108–122 (1999). https://doi.org/10.1086/30718710.48550/arXiv.astro-ph/9812392. [arXiv:astro-ph/9812392]

  161. F. Nicastro, F. Fiore, G.C. Perola, M. Elvis, ApJ 512, 184–196 (1999). https://doi.org/10.1086/30673610.48550/arXiv.astro-ph/9808316. [arXiv:astro-ph/9808316]

  162. F. Nicastro, L. Piro, A. De Rosa et al., ApJ 536, 718–728 (2000). https://doi.org/10.1086/30895010.48550/arXiv.astro-ph/0001201. [arXiv:astro-ph/0001201]

  163. C. Nixon, A. King, D. Price, J. Frank, ApJL 757, L24 (2012). https://doi.org/10.1088/2041-8205/757/2/L24. [arXiv:1209.1393]

  164. H. Noda, T. Mineta, T. Minezaki, et al., (2022), [arXiv:2212.02731]

  165. M. Nomura, K. Ohsuga, MNRAS 465, 2873–2879 (2017). https://doi.org/10.1093/mnras/stw2877. [arXiv:1610.08511]

  166. M. Nomura, K. Ohsuga, C. Done, MNRAS 494, 3616–3626 (2020). https://doi.org/10.1093/mnras/staa948. [arXiv:1811.01966]

  167. P. Palmeri, C. Mendoza, T.R. Kallman, M.A. Bautista, A &A 403, 1175–1184 (2003). https://doi.org/10.1051/0004-6361:20030405

  168. P. Palmeri, C. Mendoza, T.R. Kallman, M.A. Bautista, M. Meléndez, A &A 410, 359–364 (2003). https://doi.org/10.1051/0004-6361:20031262. [arXiv:astro-ph/0306321]

  169. M.L. Parker, C. Pinto, A.C. Fabian et al., Natur 543, 83–86 (2017). https://doi.org/10.1038/nature21385. [arXiv:1703.00071]

  170. M.L. Parker, G.A. Matzeu, J.H. Matthews et al., MNRAS 513, 551–572 (2022). https://doi.org/10.1093/mnras/stac877. [arXiv:2203.14789]

  171. C. Pinto, W. Alston, M.L. Parker et al., MNRAS 476, 1021–1035 (2018). https://doi.org/10.1093/mnras/sty231. [arXiv:1708.09422]

  172. G. Ponti, L.C. Gallo, A.C. Fabian et al., MNRAS 406, 2591–2604 (2010). https://doi.org/10.1111/j.1365-2966.2010.16852.x. [arXiv:0911.1003]

  173. G. Ponti, M.R. Morris, R. Terrier et al., MNRAS 453, 172–213 (2015). https://doi.org/10.1093/mnras/stv1331. [arXiv:1508.04445]

  174. K.A. Pounds, J.N. Reeves, A.R. King et al., MNRAS 345, 705–713 (2003). https://doi.org/10.1046/j.1365-8711.2003.07006.x. [arXiv:astro-ph/0303603]

  175. D. Proga, J.M. Stone, T.R. Kallman, ApJ 543, 686–696 (2000). https://doi.org/10.1086/317154. [arXiv:astro-ph/0005315]

  176. D. Proga, T.R. Kallman, ApJ 616, 688–695 (2004). https://doi.org/10.1086/425117. [arXiv:astro-ph/0408293]

  177. J.N. Reeves, V. Braito, ApJ 884, 80 (2019). https://doi.org/10.3847/1538-4357/ab41f9. [arXiv:1909.05039]

  178. J.N. Reeves, V. Braito, G. Chartas et al., ApJ 895, 37 (2020). https://doi.org/10.3847/1538-4357/ab8cc4. [arXiv:2004.12439]

  179. J.N. Reeves, P.T. O’Brien, M.J. Ward, ApJL 593, L65–L68 (2003). https://doi.org/10.1086/378218. [arXiv:astro-ph/0307127]

  180. J.N. Reeves, R.M. Sambruna, V. Braito, M. Eracleous, ApJL 702, L187–L190 (2009). https://doi.org/10.1088/0004-637X/702/2/L18710.48550/arXiv.0908.1715. [arXiv:0908.1715]

  181. C.S. Reynolds, MNRAS 286, 513–537 (1997). https://doi.org/10.1093/mnras/286.3.51310.48550/arXiv.astro-ph/9610127. [arXiv:astro-ph/9610127]

  182. C.S. Reynolds, ARA &A 59, 117–154 (2021). https://doi.org/10.1146/annurev-astro-112420-035022. [arXiv:2011.08948]

  183. G. Risaliti, E. Nardini, M. Salvati et al., MNRAS 410, 1027–1035 (2011). https://doi.org/10.1111/j.1365-2966.2010.17503.x10.48550/arXiv.1008.5067. [arXiv:1008.5067]

  184. D. Rogantini, E. Costantini, L.C. Gallo et al., MNRAS 516, 5171–5186 (2022). https://doi.org/10.1093/mnras/stac2552. [arXiv:2209.02747]

  185. D. Rogantini, M. Mehdipour, J. Kaastra et al., ApJ 940, 122 (2022). https://doi.org/10.3847/1538-4357/ac9c01

  186. R.R. Ross, A.C. Fabian, MNRAS 261, 74–82 (1993). https://doi.org/10.1093/mnras/261.1.74

  187. R.R. Ross, A.C. Fabian, MNRAS 358, 211–216 (2005). https://doi.org/10.1111/j.1365-2966.2005.08797.x. [arXiv:astro-ph/0501116]

  188. A. Rózańska, I. Kowalska, A.C. Gonçalves, A &A 487, 895–900 (2008). https://doi.org/10.1051/0004-6361:200809549

  189. M. Sako, S.M. Kahn, E. Behar et al., A &A 365, L168–L173 (2001). https://doi.org/10.1051/0004-6361:20000081. [arXiv:astro-ph/0010660]

  190. R.D. Saxton, A.M. Read, P. Esquej et al., A &A 480, 611–622 (2008). https://doi.org/10.1051/0004-6361:20079193. [arXiv:0801.3732]

  191. R. Serafinelli, F. Tombesi, F. Vagnetti et al., A &A 627, A121 (2019). https://doi.org/10.1051/0004-6361/201935275. [arXiv:1906.02765]

  192. N.I. Shakura, R.A. Sunyaev, A &A 24, 337–355 (1973)

    ADS  Google Scholar 

  193. X.W. Shu, T. Yaqoob, J.X. Wang, ApJS 187, 581–606 (2010). https://doi.org/10.1088/0067-0049/187/2/581. [arXiv:1003.1790]

  194. J. Silk, M.J. Rees, A &A 331, L1–L4 (1998), ([arXiv:astro-ph/9801013])

  195. C.V. Silva, P. Uttley, E. Costantini, A &A 596, A79 (2016). https://doi.org/10.1051/0004-6361/20162855510.48550/arXiv.1607.01065. [arXiv:1607.01065]

  196. S.A. Sim, K.S. Long, L. Miller, T.J. Turner, MNRAS 388, 611–624 (2008). https://doi.org/10.1111/j.1365-2966.2008.13466.x. [arXiv:0805.2251]

  197. S.A. Sim, L. Miller, K.S. Long, T.J. Turner, J.N. Reeves, MNRAS 404, 1369–1384 (2010). https://doi.org/10.1111/j.1365-2966.2010.16396.x. [arXiv:1002.0544]

  198. R.K. Smith, M.H. Abraham, R. Allured et al., SPIE 9905, 99054M (2016). https://doi.org/10.1117/12.2231778

  199. V. Springel, L. Hernquist, ApJL 622, L9–L12 (2005). https://doi.org/10.1086/429486. [arXiv:astro-ph/0411379]

  200. K.C. Steenbrugge, M. Fenovčík, J.S. Kaastra, E. Costantini, F. Verbunt, A &A 496, 107–119 (2009). https://doi.org/10.1051/0004-6361/200810416. [arXiv:0901.3108]

  201. K.C. Steenbrugge, J.S. Kaastra, D.M. Crenshaw et al., A &A 434, 569–584 (2005). https://doi.org/10.1051/0004-6361:20047138. [arXiv:astro-ph/0501122]

  202. T. Takahashi, M. Kokubun, K. Mitsuda et al., JATIS 4, 021402 (2018). https://doi.org/10.1117/1.JATIS.4.2.021402

  203. Y. Tanaka, T. Boller, L. Gallo, R. Keil, Y. Ueda, PASJ 56, L9–L13 (2004). https://doi.org/10.1093/pasj/56.3.L9. [arXiv:astro-ph/0405158]

  204. C.B. Tarter, W.H. Tucker, E.E. Salpeter, ApJ 156, 943 (1969). https://doi.org/10.1086/150026

  205. M. Tashiro, H. Maejima, K. Toda et al., SPIE 11444, 1144422 (2020). https://doi.org/10.1117/12.2565812

  206. L. Titarchuk, ApJ 434, 570 (1994). https://doi.org/10.1086/174760

  207. R. Tomaru, C. Done, J. Mao, MNRAS 518, 1789–1801 (2023). https://doi.org/10.1093/mnras/stac3210. [arXiv:2204.08802]

  208. F. Tombesi, M. Cappi, J.N. Reeves et al., A &A 521, A57 (2010). https://doi.org/10.1051/0004-6361/200913440. [arXiv:1006.2858]

  209. F. Tombesi, M. Cappi, J.N. Reeves et al., ApJ 742, 44 (2011). https://doi.org/10.1088/0004-637X/742/1/44. [arXiv:1109.2882]

  210. F. Tombesi, R.M. Sambruna, J.N. Reeves et al., ApJ 719, 700–715 (2010). https://doi.org/10.1088/0004-637X/719/1/700. [arXiv:1006.3536]

  211. E. Torresi, P. Grandi, E. Costantini, G.G.C. Palumbo, MNRAS 419, 321–329 (2012). https://doi.org/10.1111/j.1365-2966.2011.19694.x10.48550/arXiv.1108.4890. [arXiv:1108.4890]

  212. T.J. Turner, L. Miller, S.B. Kraemer, J.N. Reeves, ApJ 733, 48 (2011). https://doi.org/10.1088/0004-637X/733/1/48. [arXiv:1103.3709]

  213. D.A. Turnshek, ApJ 280, 51–65 (1984). https://doi.org/10.1086/161967

  214. C.M. Urry, P. Padovani, PASP 107, 803 (1995). https://doi.org/10.1086/133630. [arXiv:astro-ph/9506063]

  215. W. Voges, B. Aschenbach, T. Boller et al., A &A 349, 389–405 (1999). ([arXiv:astro-ph/9909315])

  216. D.J. Walton, W.N. Alston, P. Kosec et al., MNRAS 499, 1480–1498 (2020). https://doi.org/10.1093/mnras/staa2961. [arXiv:2009.10734]

  217. S. Watanabe, M. Sako, M. Ishida et al., ApJL 597, L37–L40 (2003). https://doi.org/10.1086/379735. [arXiv:astro-ph/0309344]

  218. D.R. Wilkins, L.C. Gallo, E. Costantini, W.N. Brandt, R.D. Blandford, MNRAS 512, 761–775 (2022). https://doi.org/10.1093/mnras/stac416. [arXiv:2202.06958]

  219. D.R. Wilkins, L.C. Gallo, D. Grupe et al., MNRAS 454, 4440–4451 (2015). https://doi.org/10.1093/mnras/stv2130. [arXiv:1510.07656]

  220. R.J. Weymann, S.L. Morris, C.B. Foltz, P.C. Hewett, ApJ 373, 23 (1991). https://doi.org/10.1086/170020

  221. Y. Xu, C. Pinto, S. Bianchi et al., MNRAS 508, 6049–6067 (2021). https://doi.org/10.1093/mnras/stab2984. [arXiv:2110.06633]

  222. T. Yaqoob, I.M. George, K. Nandra et al., ApJ 546, 759–768 (2001). https://doi.org/10.1086/318315. [arXiv:astro-ph/0008471]

  223. T. Yaqoob, MNRAS 423, 3360–3396 (2012). https://doi.org/10.1111/j.1365-2966.2012.21129.x. [arXiv:1204.4196]

  224. A. Zoghbi, A.C. Fabian, C.S. Reynolds, E.M. Cackett, MNRAS 422, 129–134 (2012). https://doi.org/10.1111/j.1365-2966.2012.20587.x. [arXiv:1112.1717]

  225. A. Zoghbi, A.C. Fabian, P. Uttley et al., MNRAS 401, 2419–2432 (2010). https://doi.org/10.1111/j.1365-2966.2009.15816.x. [arXiv:0910.0367]

  226. A. Zoghbi, J.M. Miller, E. Cackett, ApJ 884, 26 (2019). https://doi.org/10.3847/1538-4357/ab3e31. [arXiv:1908.09862]

  227. Y. Zu, C.S. Kochanek, S. Kozłowski, A. Udalski, ApJ 765, 106 (2013). https://doi.org/10.1088/0004-637X/765/2/106. [arXiv:1202.3783]

Download references

Acknowledgements

The authors would like to thank Margaret Buhariwalla, Susmita Chackravorty, Keigo Fukumura, Adam Gonzalez, Jelle Kaastra, Tim Kallman, Gabriele Matzeu, Missagh Mehdipour, Daniel Proga, John Raymond, Daniele Rogantini for discussion, data, code, and help with figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi C. Gallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallo, L.C., Miller, J.M., Costantini, E. (2023). Active Galactic Nuclei with High-Resolution X-Ray Spectroscopy. In: Bambi, C., Jiang, J. (eds) High-Resolution X-ray Spectroscopy. Springer Series in Astrophysics and Cosmology. Springer, Singapore. https://doi.org/10.1007/978-981-99-4409-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4409-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4408-8

  • Online ISBN: 978-981-99-4409-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics