Skip to main content

Probing Black-Hole Accretion Through Time Variability

  • Living reference work entry
  • First Online:
Handbook of X-ray and Gamma-ray Astrophysics

Abstract

Flux variability is a remarkable property of black hole (BH) accreting systems and a powerful tool to investigate the multi-scale structure of the accretion flow. The X-ray band is where some of the most rapid variations occur, pointing to an origin in the innermost regions close to the BH. The study of fast time variability provides us with means to explore the accretion flow around compact objects in ways which are inaccessible via spectral analysis alone and to peek at regions which cannot be imaged with the currently available instrumentation. In this chapter we will discuss fast X-ray variability in stellar-mass BH systems, namely, binary systems containing a star and a BH, occasionally contrasting it with observations of supermassive BHs in active galactic nuclei. We will explore how rapid variations of the X-ray flux have been used in multiple studies as a diagnostic of the innermost regions of the accretion flow in these systems. To this aim we will provide an overview of the currently most used analysis approaches for the study of X-ray variability, describe observations of both aperiodic and quasi-periodic phenomena, and discuss some of the proposed models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • M.A. Abramowicz, W. Kluźniak, A precise determination of black hole spin in GRO J1655-40. A&A 374, L19–L20 (2001). https://doi.org/10.1051/0004-6361:20010791, arXiv:arXiv:astro-ph/0105077

  • W. Alston, A. Fabian, J. Markevičiutė, M. Parker, M. Middleton, E. Kara, Quasi periodic oscillations in active galactic nuclei. Astron. Nachr. 337, 417–422 (2016). https://doi.org/10.1002/asna.201612323, arXiv:1510.01111

  • W.N. Alston et al., The remarkable X-ray variability of IRAS 13224-3809 – I. The variability process. MNRAS 482, 2088–2106 (2019). https://doi.org/10.1093/mnras/sty2527, arXiv:1803.10444

  • D. Altamirano, A. Ingram, M. van der Klis, R. Wijnands, M. Linares, J. Homan, Low-frequency quasi-periodic oscillation from the 11 Hz accreting pulsar in terzan 5: not frame dragging. ApJ 759, L20 (2012). https://doi.org/10.1088/2041-8205/759/1/L20, arXiv:1210.1494

  • D. Altamirano, M. Méndez, The evolution of the X-ray phase lags during the outbursts of the black hole candidate GX 339-4. MNRAS 449, 4027–4037 (2015). https://doi.org/10.1093/mnras/stv556, arXiv:1503.04457

  • P. Arévalo, P. Uttley, Investigating a fluctuating-accretion model for the spectral-timing properties of accreting black hole systems. MNRAS 367, 801–814 (2006). https://doi.org/10.1111/j.1365-2966.2006.09989.x, arXiv:astro-ph/0512394

  • P. Arévalo, P. Uttley, P. Lira, E. Breedt, I.M. McHardy, E. Churazov, Correlation and time delays of the x-ray and optical emission of the Seyfert Galaxy NGC 3783. MNRAS 397, 2004–2014 (2009). https://doi.org/10.1111/j.1365-2966.2009.15110.x, arXiv:0905.1981

  • D. Barret, M. Cappi, Inferring black hole spins and probing accretion/ejection flows in AGNs with the athena x-ray integral field unit. A&A 628, A5 (2019). https://doi.org/10.1051/0004-6361/201935817, arXiv:1906.02734

  • T. Belloni, The Jet Paradigm, vol. 794 (2010a). https://doi.org/10.1007/978-3-540-76937-8

  • T. Belloni, G. Hasinger, An atlas of aperiodic variability in HMXB. A&A 230, 103–119 (1990a)

    ADS  Google Scholar 

  • T. Belloni, G. Hasinger, Variability in the noise properties of Cygnus X-1. A&A 227, L33–L36 (1990b)

    ADS  Google Scholar 

  • T. Belloni, J. Homan, P. Casella, M. van der Klis, E. Nespoli, W.H.G. Lewin, J.M. Miller, M. Méndez, The evolution of the timing properties of the black-hole transient GX 339-4 during its 2002/2003 outburst. A&A 440, 207–222 (2005). https://doi.org/10.1051/0004-6361:20042457, arXiv:arXiv:astro-ph/0504577

  • T. Belloni, D. Psaltis, M. van der Klis, A unified description of the timing features of accreting x-ray binaries. ApJ 572, 392–406 (2002). https://doi.org/10.1086/340290, arXiv:arXiv:astro-ph/0202213

  • T.M. Belloni, States and transitions in black hole binaries. Lect. Notes Phys. 794, 53–+ (2010b). https://doi.org/10.1007/978-3-540-76937-8_3, arXiv:0909.2474

  • T.M. Belloni, D. Altamirano, High-frequency quasi-periodic oscillations from GRS 1915+105. MNRAS 432, 10–18 (2013). https://doi.org/10.1093/mnras/stt500, arXiv:1303.4551

  • T.M. Belloni, D. Bhattacharya, P. Caccese, V. Bhalerao, S. Vadawale, J.S. Yadav, A variable-frequency HFQPO in GRS 1915+105 as observed with AstroSat. MNRAS 489, 1037–1043 (2019). https://doi.org/10.1093/mnras/stz2143, arXiv:1908.00437

  • T.M. Belloni, S.E. Motta, Transient black hole binaries, in Astrophysics of Black Holes: From Fundamental Aspects to Latest Developments, ed. by C. Bambi. Astrophysics and Space Science Library, vol. 440 (2016), p. 61. https://doi.org/10.1007/978-3-662-52859-4_2, arXiv:1603.07872

  • T.M. Belloni, S.E. Motta, T. Muñoz-Darias, Black hole transients. Bull. Astron. Soc. India 39, 409–428 (2011). arXiv:1109.3388

    Google Scholar 

  • T.M. Belloni, A. Sanna, M. Méndez, High-frequency quasi-periodic oscillations in black hole binaries. MNRAS 426, 1701–1709 (2012). https://doi.org/10.1111/j.1365-2966.2012.21634.x, arXiv:1207.2311

  • T.M. Belloni, L. Zhang, n.d. Kylafis, P. Reig, D. Altamirano, Time lags of the type-B quasi-periodic oscillation in MAXI J1348-630. MNRAS 496, 4366–4371 (2020). https://doi.org/10.1093/mnras/staa1843, arXiv:2006.12872

  • J. Bendat, A. Piersol, Random Data: Analysis and Measurement Procedures. Wiley Series in Probability and Statistics (Wiley, 1986). https://books.google.com.gi/books?id=WAlXtQEACAAJ

  • F. Bernardini, D.M. Russell, A.W. Shaw, F. Lewis, P.A. Charles, K.I.I. Koljonen, J.P. Lasota, J. Casares, Events leading up to the 2015 June outburst of V404 Cyg. ApJ 818, L5 (2016). https://doi.org/10.3847/2041-8205/818/1/L5, arXiv:1601.04550

  • D.A. Bollimpalli, R. Mahmoud, C. Done, P.C. Fragile, W. Kluźniak, R. Narayan, C.J. White, Looking for the underlying cause of black hole x-ray variability in GRMHD simulations. MNRAS 496, 3808–3828 (2020). https://doi.org/10.1093/mnras/staa1808, arXiv:2006. 00755

  • J.S. Bright et al., An extremely powerful long-lived superluminal ejection from the black hole MAXI J1820+070. Nat. Astron. 4, 697–703 (2020). https://doi.org/10.1038/s41550-020-1023-5, arXiv:2003.01083

  • P. Casella, T. Belloni, J. Homan, L. Stella, A study of the low-frequency quasi-periodic oscillations in the X-ray light curves of the black hole candidate XTE J1859+226. A&A 426, 587–600 (2004). https://doi.org/10.1051/0004-6361:20041231, arXiv:arXiv:astro-ph/0407262

  • P. Casella, T. Belloni, L. Stella, The ABC of low-frequency quasi-periodic oscillations in black hole candidates: analogies with Z sources. ApJ 629, 403–407 (2005). https://doi.org/10.1086/431174, arXiv:arXiv:astro-ph/0504318

  • P. Cassatella, P. Uttley, J. Wilms, J. Poutanen, Joint spectral-timing modelling of the hard lags in GX 339-4: constraints on reflection models. MNRAS 422, 2407–2416 (2012). https://doi.org/10.1111/j.1365-2966.2012.20792.x, arXiv:1202.4881

  • E. Churazov, M. Gilfanov, M. Revnivtsev, Soft state of Cygnus X-1: stable disc and unstable corona. MNRAS 321, 759–766 (2001). https://doi.org/10.1046/j.1365-8711.2001.04056.x, arXiv:astro-ph/0006227

  • S. Corbel, P. Kaaret, R.P. Fender, A.K. Tzioumis, J.A. Tomsick, J.A. Orosz, Discovery of x-ray jets in the microquasar H1743-322. ApJ 632, 504–513 (2005). https://doi.org/10.1086/432499, arXiv:arXiv:astro-ph/0505526

  • J.M. Corral-Santana, J. Casares, T. Muñoz-Darias, F.E. Bauer, I.G. Martínez-Pais, D.M. Russell, BlackCAT: a catalogue of stellar-mass black holes in X-ray transients. A&A 587, A61 (2016). https://doi.org/10.1051/0004-6361/201527130, arXiv:1510.08869

  • W. Cui, S.N. Zhang, W. Focke, J.H. Swank, Temporal properties of Cygnus X-1 during the spectral transitions. ApJ 484, 383–393 (1997). https://doi.org/10.1086/304341, arXiv:astro-ph/9702073

  • B. De Marco et al., Incoherent fast variability of X-ray obscurers. The case of NGC 3783. A&A 634, A65 (2020). https://doi.org/10.1051/0004-6361/201936470 arXiv:1911.12772

  • B. De Marco, G. Ponti, The reverberation lag in the low-mass x-ray binary H1743-322. ApJ 826, 70 (2016). https://doi.org/10.3847/0004-637X/826/1/70, arXiv:1605.00765

  • B. De Marco, G. Ponti, M. Cappi, M. Dadina, P. Uttley, E.M. Cackett, A.C. Fabian, G. Miniutti, Discovery of a relation between black hole mass and soft X-ray time lags in active galactic nuclei. MNRAS 431, 2441–2452 (2013). https://doi.org/10.1093/mnras/stt339, arXiv:1201.0196

  • B. De Marco, G. Ponti, T. Muñoz-Darias, K. Nandra, The evolution of the disc variability along the hard state of the black hole transient GX 339-4. MNRAS 454, 2360–2371 (2015a). https://doi.org/10.1093/mnras/stv1990, arXiv:1509.00043

  • B. De Marco, G. Ponti, T. Muñoz-Darias, K. Nandra, Tracing the reverberation lag in the hard state of black hole x-ray binaries. ApJ 814, 50 (2015b). https://doi.org/10.1088/0004-637X/814/1/50, arXiv:1510.02798

  • B. De Marco et al., Evolution of the reverberation lag in GX 339-4 at the end of an outburst. MNRAS 471, 1475–1487 (2017). https://doi.org/10.1093/mnras/stx1649, arXiv:1706.10053

  • B. De Marco, G. Ponti, P. Uttley, M. Cappi, M. Dadina, A.C. Fabian, G. Miniutti, PG 1211+143: probing high-frequency lags in a high-mass active galactic nucleus. MNRAS 417, L98–L102 (2011). https://doi.org/10.1111/j.1745-3933.2011.01129.x, arXiv:1108.3503

  • B. De Marco, A.A. Zdziarski, G. Ponti, G. Migliori, T.M. Belloni, A. Segovia Otero, M.A. Dziełak, E.V. Lai, The inner flow geometry in MAXI J1820+070 during hard and hard-intermediate states. A&A 654, A14 (2021). https://doi.org/10.1051/0004-6361/202140567, arXiv:2102.07811

  • A. De Rosa et al., Accretion in strong field gravity with eXTP. Sci. China Phys. Mech. Astron. 62, 29504 (2019). https://doi.org/10.1007/s11433-018-9297-0, arXiv:1812.04022

  • C. Done, M. Gierliński, Scaling variability from stellar to supermassive black holes. MNRAS 364, 208–216 (2005). https://doi.org/10.1111/j.1365-2966.2005.09555.x, arXiv:astro-ph/ 0505183

  • C. Done, G. Wardziński, M. Gierliński, GRS 1915+105: the brightest Galactic black hole. MNRAS 349, 393–403 (2004). https://doi.org/10.1111/j.1365-2966.2004.07545.x, arXiv:astro-ph/0308536

  • G. Dubus, J.M. Hameury, J.P. Lasota, The disc instability model for X-ray transients: evidence for truncation and irradiation. A&A 373, 251–271 (2001). https://doi.org/10.1051/0004-6361:20010632, arXiv:astro-ph/0102237

  • R.J.H. Dunn, R.P. Fender, E.G. Körding, T. Belloni, C. Cabanac, A global spectral study of black hole x-ray binaries. MNRAS 403, 61–82 (2010). https://doi.org/10.1111/j.1365-2966.2010.16114.x, arXiv:0912.0142

  • M. Durant, P. Gandhi, T. Shahbaz, H.H. Peralta, V.S. Dhillon, Multiwavelength spectral and high time resolution observations of SWIFTJ1753.5-0127: new activity? MNRAS 392, 309–324 (2009). https://doi.org/10.1111/j.1365-2966.2008.14044.x, arXiv:0810.1141

  • M.A. Dziełak, A.A. Zdziarski, M. Szanecki, B. De Marco, A. Niedźwiecki, A. Markowitz, Comparison of spectral models for disc truncation in the hard state of GX 339-4. MNRAS 485, 3845–3856 (2019). https://doi.org/10.1093/mnras/stz668, arXiv:1811.09145

  • A.A. Esin, J.E. McClintock, R. Narayan, Advection-dominated accretion and the spectral states of black hole x-ray binaries: application to nova muscae 1991. ApJ 489, 865–889. https://doi.org/10.1086/304829, arXiv:astro-ph/9705237

  • M. Espinasse et al., Relativistic x-ray jets from the black hole x-ray binary MAXI J1820+070. ApJ 895, L31 (2020). https://doi.org/10.3847/2041-8213/ab88b6, arXiv:2004.06416

  • A.C. Fabian et al., Broad line emission from iron K- and L-shell transitions in the active galaxy 1H0707-495. Nature 459, 540–542 (2009). https://doi.org/10.1038/nature08007

    Article  ADS  Google Scholar 

  • R.P. Fender, T.M. Belloni, E. Gallo, Towards a unified model for black hole X-ray binary jets. MNRAS 355, 1105–1118 (2004). https://doi.org/10.1111/j.1365-2966.2004.08384.x, arXiv:arXiv:astro-ph/0409360

  • R.P. Fender, J. Homan, T.M. Belloni, Jets from black hole X-ray binaries: testing, refining and extending empirical models for the coupling to X-rays. MNRAS 396, 1370–1382 (2009). https://doi.org/10.1111/j.1365-2966.2009.14841.x, arXiv:0903.5166

  • J. Ferreira, P.O. Petrucci, G. Henri, L. Saugé, G. Pelletier, A unified accretion-ejection paradigm for black hole X-ray binaries. I. The dynamical constituents. A&A 447, 813–825 (2006). https://doi.org/10.1051/0004-6361:20052689, arXiv:astro-ph/0511123

  • P.C. Fragile, O.M. Blaes, P. Anninos, J.D. Salmonson, Global general relativistic magnetohydrodynamic simulation of a tilted black hole accretion disk. ApJ 668, 417–429 (2007). https://doi.org/10.1086/521092, arXiv:0706.4303

  • J. Frank, A. King, D.J. Raine, Accretion Power in Astrophysics: Third Edition (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  • P. Gandhi et al., Rapid optical and X-ray timing observations of GX339-4: multicomponent optical variability in the low/hard state. MNRAS 407, 2166–2192 (2010). https://doi.org/10.1111/j.1365-2966.2010.17083.x, arXiv:1005.4685

  • H.Q. Gao et al., The type B QPO phenomena in the transient black hole candidate GX 339-4. MNRAS 438, 341–351 (2014). https://doi.org/10.1093/mnras/stt2197

    Article  ADS  Google Scholar 

  • F. García, K. Karpouzas, M. Méndez, L. Zhang, Y. Zhang, T. Belloni, D. Altamirano, The evolving properties of the corona of GRS 1915+105: a spectral-timing perspective through variable-Comptonization modelling. MNRAS 513, 4196–4207 (2022). https://doi.org/10.1093/mnras/stac1202, arXiv:2204.13279

  • F. García, M. Méndez, K. Karpouzas, T. Belloni, L. Zhang, D. Altamirano, A two-component Comptonization model for the type-B QPO in MAXI J1348-630. MNRAS 501, 3173–3182 (2021). https://doi.org/10.1093/mnras/staa3944, arXiv:2012.10354

  • K.C. Gendreau et al., The Neutron star Interior Composition Explorer (NICER): design and development, in Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, ed. by J.W.A. den Herder, T. Takahashi, M. Bautz. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9905 (2016), p. 99051H. https://doi.org/10.1117/12.2231304

  • D. Giannios, n.d. Kylafis, D. Psaltis, Spectra and time variability of Galactic black-hole X-ray sources in the low/hard state. A&A 425, 163–169 (2004). https://doi.org/10.1051/0004-6361:20041002, arXiv:astro-ph/0405569

  • M. Gierliński, C. Done, Black hole accretion discs: reality confronts theory. MNRAS 347, 885–894 (2004). https://doi.org/10.1111/j.1365-2966.2004.07266.x, arXiv:astro-ph/0307333

  • M. Gierliński, A.A. Zdziarski, Patterns of energy-dependent variability from Comptonization. MNRAS 363, 1349–1360 (2005). https://doi.org/10.1111/j.1365-2966.2005.09527.x, arXiv:astro-ph/0506388

  • M. Gilfanov, X-ray emission from black-hole binaries, in Lecture Notes in Physics, vol. 794, ed. by T. Belloni (Springer, Berlin, 2010), p. 17. https://doi.org/10.1007/978-3-540-76937-8_2

    Google Scholar 

  • M. Gilfanov, V. Arefiev, X-ray variability, viscous time scale and Lindblad resonances in LMXBs (2005). arXiv:astro-ph/0501215

    Google Scholar 

  • O. González-Martín, S. Vaughan, X-ray variability of 104 active galactic nuclei. XMM-Newton power-spectrum density profiles. A&A 544, A80 (2012). https://doi.org/10.1051/0004-6361/201219008, arXiv:1205.4255

  • V. Grinberg et al., Long term variability of Cygnus X-1. VI. Energy-resolved x-ray variability 1999-2011. A&A 565, A1 (2014). https://doi.org/10.1051/0004-6361/201322969, arXiv:1402.4485

  • P.W. Guilbert, M.J. Rees, Cold material in non-thermal sources. MNRAS 233, 475–484 (1988). https://doi.org/10.1093/mnras/233.2.475

    Article  ADS  Google Scholar 

  • L.M. Heil, P. Uttley, M. Klein-Wolt, Power colours: simple X-ray binary variability comparison. MNRAS 448, 3339–3347 (2015). https://doi.org/10.1093/mnras/stv191, arXiv:1405. 2024

  • L.M. Heil, S. Vaughan, The linear rms-flux relation in an ultraluminous X-ray source. MNRAS 405, L86–L89 (2010). https://doi.org/10.1111/j.1745-3933.2010.00864.x, arXiv:1003.5825

  • L.M. Heil, S. Vaughan, P. Uttley, The ubiquity of the rms-flux relation in black hole X-ray binaries. MNRAS 422, 2620–2631 (2012). https://doi.org/10.1111/j.1365-2966.2012. 20824.x, arXiv:1202.5877

  • J.D. Hogg, C.S. Reynolds, Testing the propagating fluctuations model with a long, global accretion disk simulation. ApJ 826, 40 (2016). https://doi.org/10.3847/0004-637X/826/1/40, arXiv:1512.05350

  • J. Homan, T. Belloni, The evolution of black hole states. Ap&SS 300, 107–117 (2005). https://doi.org/10.1007/s10509-005-1197-4, arXiv:astro-ph/0412597

  • J. Homan et al., A rapid change in x-ray variability and a jet ejection in the black hole transient MAXI J1820+070. ApJ 891, L29 (2020). https://doi.org/10.3847/2041-8213/ab7932, arXiv:2003.01012

  • J. Homan, M. Buxton, S. Markoff, C.D. Bailyn, E. Nespoli, T. Belloni, Multiwavelength observations of the 2002 outburst of GX 339-4: two patterns of x-ray-optical/near-infrared behavior. ApJ 624, 295–306 (2005). https://doi.org/10.1086/428722, arXiv:arXiv:astro-ph/0501349

  • J. Homan, R. Wijnands, M. van der Klis, T. Belloni, J. van Paradijs, M. Klein-Wolt, R. Fender, M. Méndez, Correlated x-ray spectral and timing behavior of the black hole candidate XTE J1550-564: a new interpretation of black hole states. ApJ 132, 377–402 (2001). https://doi.org/10.1086/318954, arXiv:arXiv:astro-ph/0001163

  • R.I. Hynes et al., The remarkable rapid X-ray, ultraviolet, optical and infrared variability in the black hole XTE J1118+480. Mon. Not. R. Astron. Soc. 345, 292–310 (2003). https://doi.org/10.1046/j.1365-8711.2003.06938.x, arXiv:astro-ph/0306626

  • J.N. Imamura, J. Kristian, J. Middleditch, T.Y. Steiman-Cameron, The 8 Second Optical Quasi-periodic Oscillations in GX 339-4. Astrophys. J. 365, 312 (1990). https://doi.org/10.1086/169484

    Article  ADS  Google Scholar 

  • A. Ingram, X-ray polarimetry-timing (2022). arXiv:2206.11671

    Google Scholar 

  • A. Ingram, C. Done, A physical model for the continuum variability and quasi-periodic oscillation in accreting black holes. MNRAS 415, 2323–2335 (2011). https://doi.org/10.1111/j.1365-2966.2011.18860.x, arXiv:1101.2336

  • A. Ingram, C. Done, Modelling variability in black hole binaries: linking simulations to observations. MNRAS 419, 2369–2378 (2012). https://doi.org/10.1111/j.1365-2966.2011.19885.x, arXiv:1108.0789

  • A. Ingram, C. Done, P.C. Fragile, Low-frequency quasi-periodic oscillations spectra and Lense-Thirring precession. MNRAS 397, L101–L105 (2009). https://doi.org/10.1111/j.1745-3933.2009.00693.x

    Article  ADS  Google Scholar 

  • A. Ingram, G. Mastroserio, T. Dauser, P. Hovenkamp, M. van der Klis, J.A. García, A public relativistic transfer function model for X-ray reverberation mapping of accreting black holes. MNRAS 488, 324–347 (2019). https://doi.org/10.1093/mnras/stz1720, arXiv:1906.08310

  • A. Ingram, M. van der Klis, An exact analytic treatment of propagating mass accretion rate fluctuations in X-ray binaries. MNRAS 434, 1476–1485 (2013). https://doi.org/10.1093/mnras/stt1107, arXiv:1306.3823

  • A. Ingram, M. van der Klis, M. Middleton, D. Altamirano, P. Uttley, Tomographic reflection modelling of quasi-periodic oscillations in the black hole binary H 1743-322. MNRAS 464, 2979–2991 (2017) https://doi.org/10.1093/mnras/stw2581, arXiv:1610.00948

  • A. Ingram, M. van der Klis, M. Middleton, C. Done, D. Altamirano, L. Heil, P. Uttley, M. Axelsson, A quasi-periodic modulation of the iron line centroid energy in the black hole binary H1743-322. MNRAS 461, 1967–1980 (2016). https://doi.org/10.1093/mnras/stw1245, arXiv:1607.02866

  • A.R. Ingram, S.E. Motta, A review of quasi-periodic oscillations from black hole X-ray binaries: observation and theory. 85, 101524 (2019). https://doi.org/10.1016/j.newar.2020.101524, arXiv:2001.08758

  • A. Joinet, E. Kalemci, F. Senziani, Hard X-ray emission of the microquasar GRO J1655-40 during the rise of its 2005 outburst. ApJ 679, 655–663 (2008). https://doi.org/10.1086/533512, arXiv:0803.3934

  • A. Juráňová, E. Costantini, P. Uttley, Spectral-timing of AGN ionized outflows with Athena. MNRAS 510, 4225–4235 (2022). https://doi.org/10.1093/mnras/stab3731, arXiv:2201.02640

  • P. Kaaret, H. Feng, T.P. Roberts, Ultraluminous X-ray sources. Ann. Rev. 55, 303–341 (2017). https://doi.org/10.1146/annurev-astro-091916-055259, arXiv:1703.10728

  • M. Kalamkar, P. Casella, P. Uttley, K. O’Brien, D. Russell, T. Maccarone, M. van der Klis, F. Vincentelli, Detection of the first infra-red quasi periodic oscillation in a black hole X-ray binary (2015). arXiv:1510.08907

    Google Scholar 

  • E. Kara, W.N. Alston, A.C. Fabian, E.M. Cackett, P. Uttley, C.S. Reynolds, A. Zoghbi, A global look at X-ray time lags in Seyfert galaxies. MNRAS 462, 511–531 (2016). https://doi.org/10.1093/mnras/stw1695, arXiv:1605.02631

  • E. Kara et al., The corona contracts in a black-hole transient. Nature 565, 198–201 (2019). https://doi.org/10.1038/s41586-018-0803-x, arXiv:1901.03877

  • K. Karpouzas, M. Méndez, F. García, L. Zhang, D. Altamirano, T. Belloni, Y. Zhang, A variable corona for GRS 1915+105. MNRAS 503, 5522–5533 (2021). https://doi.org/10.1093/mnras/stab827, arXiv:2103.09675

  • K. Karpouzas, M. Méndez, E.M. Ribeiro, D. Altamirano, O. Blaes, F. García, The Comptonizing medium of the neutron star in 4U 1636–53 through its lower kilohertz quasi-periodic oscillations. MNRAS 492, 1399–1415 (2020). https://doi.org/10.1093/mnras/stz3502, arXiv:1912.05380

  • S. Kato, Resonant excitation of disk oscillations by warps: a model of kHz QPOs. PASJ 56, 905–922 (2004). https://doi.org/10.1093/pasj/56.5.905, arXiv:astro-ph/0409051

  • D. Kazanas, X.M. Hua, L. Titarchuk, Temporal and spectral properties of comptonized radiation and its applications. ApJ 480, 735–740 (1997). https://doi.org/10.1086/303991

    Article  ADS  Google Scholar 

  • E. Körding, H. Falcke, X-ray time lags from a pivoting power law in black holes. A&A 414, 795–806 (2004). https://doi.org/10.1051/0004-6361:20031614, arXiv:astro-ph/0310641

  • E.G. Körding, S. Migliari, R. Fender, T. Belloni, C. Knigge, I. McHardy, The variability plane of accreting compact objects. MNRAS 380, 301–310 (2007). https://doi.org/10.1111/j.1365-2966.2007.12067.x, arXiv:0706.2959

  • O. Kotov, E. Churazov, M. Gilfanov, On the X-ray time-lags in the black hole candidates. MNRAS 327, 799–807 (2001). https://doi.org/10.1046/j.1365-8711.2001.04769.x, arXiv:astro-ph/0103115

  • n.d. Kylafis, P. Reig, Correlation of time lag and photon index in GX 339-4. A&A 614, L5 (2018). https://doi.org/10.1051/0004-6361/201833339, arXiv:1806.03052

  • J.P. Lasota, The disc instability model of dwarf novae and low-mass X-ray binary transients. New Astron. Rev. 45, 449–508 (2001). https://doi.org/10.1016/S1387-6473(01)00112-9, arXiv:astro-ph/0102072

  • Y.E. Lyubarskii, Flicker noise in accretion discs. MNRAS 292, 679 (1997). https://doi.org/10.1093/mnras/292.3.679

    Article  ADS  Google Scholar 

  • T.J. Maccarone, P.S. Coppi, J. Poutanen, Time domain analysis of variability in Cygnus X-1: constraints on the emission models. ApJ 537, L107–L110 (2000). https://doi.org/10.1086/312778, arXiv:astro-ph/0006042

  • R.D. Mahmoud, C. Done, A physical model for the spectral-timing properties of accreting black holes. MNRAS 480, 4040–4059 (2018). https://doi.org/10.1093/mnras/sty2133, arXiv:1803.04811

  • R.D. Mahmoud, C. Done, B. De Marco, Reverberation reveals the truncated disc in the hard state of GX 339-4. MNRAS 486, 2137–2152 (2019). https://doi.org/10.1093/mnras/stz933, arXiv:1811.06911

  • G. Mastroserio, A. Ingram, M. van der Klis, Multi-time-scale X-ray reverberation mapping of accreting black holes. MNRAS 475, 4027–4042 (2018). doi:https://doi.org/10.1093/mnras/sty075, arXiv:1801.03100

  • G. Mastroserio et al., Modelling correlated variability in accreting black holes: the effect of high density and variable ionization on reverberation lags. MNRAS 507, 55–73 (2021). https://doi.org/10.1093/mnras/stab2056, arXiv:2107.06893

  • I.M. McHardy, E. Koerding, C. Knigge, P. Uttley, R.P. Fender, Active galactic nuclei as scaled-up Galactic black holes. Nature 444, 730–732 (2006). https://doi.org/10.1038/nature05389, arXiv:astro-ph/0612273

  • M. Méndez, D. Altamirano, T. Belloni, A. Sanna, The phase lags of high-frequency quasi-periodic oscillations in four black hole candidates. MNRAS (2013). https://doi.org/10.1093/mnras/stt1431, arXiv:1308.0142

  • M. Méndez, K. Karpouzas, F. Garcìa, L. Zhang, Y. Zhang, T.M. Belloni, D. Altamirano. Coupling between the accreting corona and the relativistic jet in the microquasar GRS 1915+105. Nature 6, 577–583 (2022). https://doi.org/10.1038/s41550-022-01617-y

    Google Scholar 

  • F. Meyer, B.F. Liu, E. Meyer-Hofmeister, Evaporation: the change from accretion via a thin disk to a coronal flow. A&A 361, 175–188 (2000). arXiv:astro-ph/0007091

    Google Scholar 

  • F. Meyer, E. Meyer-Hofmeister, Accretion disk evaporation by a coronal siphon flow. A&A 288, 175–182 (1994)

    ADS  Google Scholar 

  • J. Middleditch, W.C. Priedhorsky, Discovery of rapid quasi-periodic oscillations in Scorpius X-1. ApJ 306, 230–237 (1986). https://doi.org/10.1086/164335

    Article  ADS  Google Scholar 

  • M.C. Miller, Phase Lags in Cygnus X-1. ApJ 441, 770 (1995). https://doi.org/10.1086/175399

    Article  ADS  Google Scholar 

  • S. Miyamoto, K. Kimura, S. Kitamoto, T. Dotani, K. Ebisawa, X-ray variability of GX 339 – 4 in its very high state. ApJ 383, 784–807 (1991). https://doi.org/10.1086/170837

    Article  ADS  Google Scholar 

  • S. Miyamoto, S. Kitamoto, K. Mitsuda, T. Dotani, Delayed hard X-rays from Cygnus X-1. Nature 336, 450–452 (1988). https://doi.org/10.1038/336450a0

    Article  ADS  Google Scholar 

  • E.H. Morgan, R.A. Remillard, J. Greiner, RXTE observations of QPOs in the black hole candidate GRS 1915+105. ApJ 482, 993–+ (1997). https://doi.org/10.1086/304191

  • C. Motch, M.J. Ricketts, C.G. Page, S.A. Ilovaisky, C. Chevalier, Simultaneous X-ray/optical observations of GX339-4 during the May 1981 optically bright state. A&A 119, 171–176 (1983)

    ADS  Google Scholar 

  • S. Motta, T. Belloni, J. Homan, The evolution of the high-energy cut-off in the X-ray spectrum of GX 339-4 across a hard-to-soft transition. MNRAS 400, 1603–1612 (2009). https://doi.org/10.1111/j.1365-2966.2009.15566.x, arXiv:0908.2451

  • S. Motta, J. Homan, T. Muñoz Darias, P. Casella, T.M. Belloni, B. Hiemstra, M. Méndez, Discovery of two simultaneous non-harmonically related quasi-periodic oscillations in the 2005 outburst of the black hole binary GRO J1655-40. MNRAS 427, 595–606 (2012). https://doi.org/10.1111/j.1365-2966.2012.22037.x, arXiv:1209.0327

  • S. Motta, T. Muñoz-Darias, P. Casella, T. Belloni, J. Homan, Low-frequency oscillations in black holes: a spectral-timing approach to the case of GX 339-4. MNRAS 418, 2292–2307 (2011). https://doi.org/10.1111/j.1365-2966.2011.19566.x, arXiv:1108.0540

  • S.E. Motta, T.M. Belloni, L. Stella, T. Muñoz-Darias, R. Fender, Precise mass and spin measurements for a stellar-mass black hole through X-ray timing: the case of GRO J1655-40. MNRAS 437, 2554–2565 (2014). https://doi.org/10.1093/mnras/stt2068, arXiv:1309.3652

  • S.E. Motta, P. Casella, M. Henze, T. Muñoz-Darias, A. Sanna, R. Fender, T. Belloni, Geometrical constraints on the origin of timing signals from black holes. MNRAS 447, 2059–2072 (2015). https://doi.org/10.1093/mnras/stu2579, arXiv:1404.7293

  • S.E. Motta, A. Franchini, G. Lodato, G. Mastroserio, On the different flavours of Lense-Thirring precession around accreting stellar mass black holes. MNRAS 473, 431–439 (2018). https://doi.org/10.1093/mnras/stx2358, arXiv:1709.02608

  • S.E. Motta, A. Rouco Escorial, E. Kuulkers, T. Muñoz-Darias, A. Sanna, Links between quasi-periodic oscillations and accretion states in neutron star low-mass X-ray binaries. MNRAS 468, 2311–2324 (2017). https://doi.org/10.1093/mnras/stx570, arXiv:1703.01263

  • S.E. Motta, T. Belloni, L. Stella, G. Pappas, J. Casares, A.T. Muñoz-Darias, M. A. P. Torres, I. V. Yanes-Rizo Black hole mass and spin measurements through the relativistic precession model: XTE J1859+226. MNRAS 517, 1469–1475 (2022). https://ui.adsabs.harvard.edu/abs/2022MNRAS.517.1469M

  • T. Muñoz-Darias et al., Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni. Nature 534, 75–78 (2016). https://doi.org/10.1038/nature17446, arXiv:1605.02358

  • T. Muñoz-Darias, S. Motta, T.M. Belloni, Fast variability as a tracer of accretion regimes in black hole transients. MNRAS 410, 679–684 (2011a). https://doi.org/10.1111/j.1365-2966.2010.17476.x, arXiv:1008.0558

  • T. Muñoz-Darias, S. Motta, H. Stiele, T.M. Belloni, The black hole candidate MAXI J1659-152: spectral and timing analysis during its 2010 outburst. MNRAS 415, 292–300 (2011b). https://doi.org/10.1111/j.1365-2966.2011.18702.x, arXiv:1103.2309

  • M.P. Muno, E.H. Morgan, R.A. Remillard, Quasi-periodic oscillations and spectral states in GRS 1915+105. ApJ 527, 321–340 (1999). https://doi.org/10.1086/308063

    Article  ADS  Google Scholar 

  • K. Nandra et al., The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission (2013). arXiv:1306.2307

    Google Scholar 

  • R. Narayan, J.E. McClintock, I. Yi, A new model for Black hole soft X-ray transients in quiescence. ApJ 457, 821 (1996). https://doi.org/10.1086/176777, arXiv:astro-ph/9508014

  • E. Nathan et al., Phase-resolved spectroscopy of a quasi-periodic oscillation in the black hole X-ray binary GRS 1915+105 with NICER and NuSTAR. MNRAS 511, 255–279 (2022). https://doi.org/10.1093/mnras/stab3803, arXiv:2201.01765

  • E. Nespoli, T. Belloni, J. Homan, J.M. Miller, W.H.G. Lewin, M. Méndez, M. van der Klis, A transient variable 6 Hz QPO from GX 339-4. A&A 412, 235–240 (2003). https://doi.org/10.1051/0004-6361:20031423, arXiv:arXiv:astro-ph/0309437

  • F. Nicastro, F. Fiore, G.C. Perola, M. Elvis, Ionized absorbers in active galactic nuclei: the role of collisional ionization and time-evolving photoionization. ApJ 512, 184–196 (1999). https://doi.org/10.1086/306736, arXiv:astro-ph/9808316

  • L. Nobili, R. Turolla, L. Zampieri, T. Belloni, A comptonization model for phase-lag variability in GRS 1915+105. ApJ 538, L137–L140 (2000). https://doi.org/10.1086/312810, arXiv:astro-ph/0006091

  • H. Noda, C. Done, Explaining changing-look AGN with state transition triggered by rapid mass accretion rate drop. MNRAS 480, 3898–3906 (2018). https://doi.org/10.1093/mnras/sty2032, arXiv:1805.07873

  • P.L. Nolan et al., Rapid variability of 10–140 keV X-rays from Cygnus X-1. ApJ 246, 494–501 (1981). https://doi.org/10.1086/158949

    Article  ADS  Google Scholar 

  • M.A. Nowak, B.A. Vaughan, Phase lags and coherence of X-ray variability in black hole candidates. MNRAS 280, 227–234 (1996). https://doi.org/10.1093/mnras/280.1.227, arXiv:astro-ph/9512019

  • M.A. Nowak, B.A. Vaughan, J. Wilms, J.B. Dove, M.C. Begelman, Rossi x-ray timing explorer observation of cygnus X-1. II. Timing analysis. ApJ 510, 874–891 (1999). https://doi.org/10.1086/306610, arXiv:astro-ph/9807278

  • M. Pahari, J. Neilsen, J.S. Yadav, R. Misra, P. Uttley, Comparison of time/phase lags in the hard state and plateau state of GRS 1915+105. ApJ 778, 136 (2013). https://doi.org/10.1088/0004-637X/778/2/136, arXiv:1310.3037

  • I.E. Papadakis, A. Rigas, A. Markowitz, I.M. McHardy, The long term X-ray time lags of NGC 4051. MNRAS 485, 1454–1459 (2019). https://doi.org/10.1093/mnras/stz489, arXiv:1903.05031

  • B.M. Peterson, Variability of active galactic nuclei, in Advanced Lectures on the Starburst-AGN, ed. by I. Aretxaga, D. Kunth, R. Mújica (2001) p. 3. https://doi.org/10.1142/9789812811318_0002, arXiv:astro-ph/0109495

  • K. Pottschmidt, J. Wilms, M.A. Nowak, W.A. Heindl, D.M. Smith, R. Staubert, Temporal evolution of X-ray lags in Cygnus X-1. A&A 357, L17–L20 (2000). arXiv:astro-ph/0004018

    Google Scholar 

  • J. Poutanen, Impact of reverberation in flared accretion discs on temporal characteristics of X-ray binaries. MNRAS 332, 257–270 (2002). https://doi.org/10.1046/j.1365-8711.2002.05272.x, arXiv:astro-ph/0106189

  • J. Poutanen, A.C. Fabian, Spectral evolution of magnetic flares and time lags in accreting black hole sources. MNRAS 306, L31–L37 (1999). https://doi.org/10.1046/j.1365-8711.1999.02735.x, arXiv:astro-ph/9811306

  • W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in FORTRAN. The Art of Scientific Computing, 2nd edn. (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  • D. Psaltis, T. Belloni, M. van der Klis, Correlations in quasi-periodic oscillation and noise frequencies among neutron star and black hole x-ray binaries. ApJ 520, 262–270 (1999). https://doi.org/10.1086/307436, arXiv:astro-ph/9902130

  • J.L. Qu, F.J. Lu, Y. Lu, L.M. Song, S. Zhang, G.Q. Ding, J.M. Wang, The energy dependence of the centroid frequency and phase lag of the quasi-periodic oscillations in GRS 1915+105. ApJ 710, 836–842 (2010). https://doi.org/10.1088/0004-637X/710/1/836, arXiv:0912.4769

  • S. Rapisarda, A. Ingram, M. van der Klis, Evolution of the hot flow of MAXI J1543-564. MNRAS 440, 2882–2893 (2014). https://doi.org/10.1093/mnras/stu461, arXiv:1403.2308

  • S. Rapisarda, A. Ingram, M. van der Klis, Cross-spectral modelling of the black hole X-ray binary XTE J1550-564: challenges to the propagating fluctuations paradigm. MNRAS 469, 2011–2023 (2017a). https://doi.org/10.1093/mnras/stx991, arXiv:1704.07705

  • S. Rapisarda, A. Ingram, M. van der Klis, Modelling hard and soft states of Cygnus X-1 with propagating mass accretion rate fluctuations. MNRAS 472, 3821–3832 (2017b). https://doi.org/10.1093/mnras/stx2110, arXiv:1708.04182

  • P. Reig, T. Belloni, M. van der Klis, M. Méndez, n.d. Kylafis, E.C. Ford, Phase lag variability associated with the 0.5–10 HZ quasi-periodic oscillations in GRS 1915+105. ApJ 541, 883–888 (2000). https://doi.org/10.1086/309469

  • P. Reig, n.d. Kylafis, Inclination effects on the X-ray emission of Galactic black-hole binaries. A&A 625, A90 (2019). https://doi.org/10.1051/0004-6361/201935070, arXiv:1904.02950

  • P. Reig, n.d. Kylafis, I.E. Papadakis, M.T. Costado, The photon-index-time-lag correlation in black hole X-ray binaries. MNRAS 473, 4644–4652 (2018). https://doi.org/10.1093/mnras/stx2683, arXiv:1710.04810

  • R. Remillard, J. McClintock, X-ray properties of black-hole binaries. Ann. Rev. 44, 49–92 (2006). https://doi.org/10.1146/annurev.astro.44.051905.092532, arXiv:arXiv:astro-ph/0606352

  • R.A. Remillard, E.H. Morgan, J.E. McClintock, C.D. Bailyn, J.A. Orosz, RXTE observations of 0.1–300 HZ quasi-periodic oscillationsin the microquasar GRO J1655-40. ApJ 522, 397–412 (1999). https://doi.org/10.1086/307606

  • J. Rodriguez, P. Varnière, M. Tagger, P. Durouchoux, Accretion-ejection instability and QPO in black hole binaries I. Observations. A&A 387, 487–496 (2002). https://doi.org/10.1051/0004-6361:20000524, arXiv:arXiv:astro-ph/0203324

  • J. Samimi et al., GX339-4: a new black hole candidate. Nature 278, 434–436 (1979). https://doi.org/10.1038/278434a0

    Article  ADS  Google Scholar 

  • S. Scaringi, E. Körding, P. Uttley, C. Knigge, P.J. Groot, M. Still, The universal nature of accretion-induced variability: the rms-flux relation in an accreting white dwarf. MNRAS 421, 2854–2860 (2012). https://doi.org/10.1111/j.1365-2966.2012.20512.x, arXiv:1201.0759

  • J.D. Schnittman, J. Homan, J.M. Miller, A precessing ring model for low-frequency quasi-periodic oscillations. ApJ 642, 420–426 (2006). https://doi.org/10.1086/500923, arXiv:astro-ph/0512595

  • N.I. Shakura, R.A. Sunyaev, Black holes in binary systems. Observational appearance. A&A 24, 337–355 (1973)

    Google Scholar 

  • C.V. Silva, P. Uttley, E. Costantini, Timing the warm absorber in NGC 4051. A&A 596, A79 (2016). https://doi.org/10.1051/0004-6361/201628555, arXiv:1607.01065

  • M.A. Sobolewska, P.T. Życki, Spectral and fourier analyses of X-ray quasi-periodic oscillations in accreting black holes. MNRAS 370, 405–414 (2006). https://doi.org/10.1111/j.1365-2966.2006.10489.x, arXiv:astro-ph/0603024

  • L. Stella, M. Vietri, Lense-thirring precession and quasi-periodic oscillations in low-mass x-ray binaries. ApJ 492, L59+ (1998). https://doi.org/10.1086/311075, arXiv:arXiv:astro-ph/9709085

  • A.L. Stevens, P. Uttley, Phase-resolved spectroscopy of Type B quasi-periodic oscillations in GX 339-4. MNRAS 460, 2796–2810 (2016). https://doi.org/10.1093/mnras/stw1093, arXiv:1605.01753

  • T.E. Strohmayer, Discovery of a 450 HZ quasi-periodic oscillation from the microquasar GRO J1655-40 with the rossi x-ray timing explorer. ApJ 552, L49–L53 (2001). https://doi.org/10.1086/320258

    Article  ADS  Google Scholar 

  • B.E. Tetarenko, J.P. Lasota, C.O. Heinke, G. Dubus, G.R. Sivakoff, Strong disk winds traced throughout outbursts in black-hole X-ray binaries. Nature 554, 69–72 (2018). https://doi.org/10.1038/nature25159, arXiv:1801.07203

  • B.E. Tetarenko, G.R. Sivakoff, C.O. Heinke, J.C. Gladstone, WATCHDOG: a comprehensive all-sky database of galactic black hole x-ray binaries. ApJ 222, 15 (2016). https://doi.org/10.3847/0067-0049/222/2/15, arXiv:1512.00778

  • J.A. Tomsick et al., Broadband x-ray spectra of GX 339-4 and the geometry of accreting black holes in the hard state. ApJ 680, 593–601 (2008). https://doi.org/10.1086/587797, arXiv:0802.3357

  • P. Uttley, SAX J1808.4-3658 and the origin of X-ray variability in X-ray binaries and active galactic nuclei. MNRAS 347, L61–L65 (2004). https://doi.org/10.1111/j.1365-2966.2004.07434.x, arXiv:astro-ph/0311453

  • P. Uttley, E.M. Cackett, A.C. Fabian, E. Kara, D.R. Wilkins, X-ray reverberation around accreting black holes. 22, 72 (2014). https://doi.org/10.1007/s00159-014-0072-0, arXiv:1405.6575

  • P. Uttley, I.M. McHardy, The flux-dependent amplitude of broadband noise variability in X-ray binaries and active galaxies. MNRAS 323, L26–L30 (2001). https://doi.org/10.1046/j.1365-8711.2001.04496.x, arXiv:astro-ph/0103367

  • P. Uttley, I.M. McHardy, I.E. Papadakis, Measuring the broad-band power spectra of active galactic nuclei with RXTE. MNRAS 332, 231–250 (2002). https://doi.org/10.1046/j.1365-8711.2002.05298.x, arXiv:astro-ph/0201134

  • P. Uttley, I.M. McHardy, S. Vaughan, Non-linear x-ray variability in x-ray binaries and active galaxies. MNRAS 359, 345–362 (2005). https://doi.org/10.1111/j.1365-2966.2005.08886.x, arXiv:astro-ph/0502112

  • P. Uttley, T. Wilkinson, P. Cassatella, J. Wilms, K. Pottschmidt, M. Hanke, M. Böck, The causal connection between disc and power-law variability in hard state black hole x-ray binaries. MNRAS 414, L60–L64 (2011). https://doi.org/10.1111/j.1745-3933.2011.01056.x, arXiv:1104.0634

  • J. van den Eijnden, A. Ingram, P. Uttley, Probing the origin of quasi-periodic oscillations: the short-time-scale evolution of phase lags in GRS 1915+105. MNRAS 458, 3655–3666 (2016). https://doi.org/10.1093/mnras/stw610, arXiv:1603.03392

  • J. van den Eijnden, A. Ingram, P. Uttley, S.E. Motta, T.M. Belloni, D.W. Gardenier, Inclination dependence of QPO phase lags in black hole X-ray binaries. MNRAS 464, 2643–2659 (2017). https://doi.org/10.1093/mnras/stw2634, arXiv:1610.03469

  • M. van der Klis, Quasi-periodic oscillations and noise in low-mass X-ray binaries. Ann. Rev. 27, 517–553 (1989). https://doi.org/10.1146/annurev.aa.27.090189.002505

    Google Scholar 

  • M. van der Klis, F. Jansen, J. van Paradijs, W.H.G. Lewin, E.P.J. van den Heuvel, J.E. Trumper, M. Szatjno, Intensity-dependent quasi-periodic oscillations in the x-ray flux of GX5 – 1. Nature 316, 225–230 (1985). https://doi.org/10.1038/316225a0

    Article  ADS  Google Scholar 

  • M. van der Klis, J.H. Swank, W. Zhang, K. Jahoda, E.H. Morgan, W.H.G. Lewin, B. Vaughan, J. van Paradijs, Discovery of Submillisecond quasi-periodic oscillations in the x-ray flux of scorpius X-1. ApJ 469, L1 (1996). https://doi.org/10.1086/310251, arXiv:astro-ph/9607047

  • B.A. Vaughan, M.A. Nowak, X-Ray variability coherence: how to compute it, what it means, and how it constrains models of GX 339-4 and Cygnus X-1. ApJ 474, L43–L46 (1997). https://doi.org/10.1086/310430, arXiv:astro-ph/9610257

  • S. Vaughan, R. Edelson, R.S. Warwick, P. Uttley, On characterizing the variability properties of X-ray light curves from active galaxies. MNRAS 345, 1271–1284 (2003a). https://doi.org/10.1046/j.1365-2966.2003.07042.x, arXiv:arXiv:astro-ph/0307420

  • S. Vaughan, A.C. Fabian, K. Nandra, X-ray continuum variability of MCG-6-30-15. MNRAS 339, 1237–1255 (2003b). https://doi.org/10.1046/j.1365-8711.2003.06285.x, arXiv:astro-ph/0211421

  • A. Veledina, Interference as an origin of the peaked noise in accreting x-ray binaries. ApJ 832, 181 (2016). https://doi.org/10.3847/0004-637X/832/2/181, arXiv:1610.00431

  • A. Veledina, Interplay of spectral components in timing properties of accreting compact objects. MNRAS 481, 4236–4249 (2018). https://doi.org/10.1093/mnras/sty2556, arXiv:1809.06053

  • F. Vignarca, S. Migliari, T. Belloni, D. Psaltis, M. van der Klis, Tracing the power-law component in the energy spectrum of black hole candidates as a function of the QPO frequency. A&A 397, 729–738 (2003). https://doi.org/10.1051/0004-6361:20021542, arXiv:arXiv:astro-ph/0210517

  • F.M. Vincentelli et al., Physical constraints from near-infrared fast photometry of the black hole transient GX 339-4. ApJ 887, L19 (2019). https://doi.org/10.3847/2041-8213/ab5860, arXiv:1911.06332

  • J. Wang et al., The NICER reverberation machine: a systematic study of time lags in black hole x-ray binaries. ApJ 930, 18 (2022). https://doi.org/10.3847/1538-4357/ac6262, arXiv:2205.00928

  • J. Wang et al., 2020. Relativistic reflection and reverberation in GX 339-4 with NICER and NuSTAR. ApJ 899, 44 (2020). https://doi.org/10.3847/1538-4357/ab9ec3, arXiv:1910.01245

  • J. Wang et al., Disk, corona, jet connection in the intermediate state of MAXI J1820+070 revealed by NICER spectral-timing analysis. ApJ 910, L3 (2021). https://doi.org/10.3847/2041-8213/abec79, arXiv:2103.05616

  • R. Wijnands, J. Homan, M. van der Klis, The complex phase-lag behavior of the 3–12 HZ quasi-periodic oscillations during the very high state of XTE J1550-564. ApJ 526, L33–L36 (1999). https://doi.org/10.1086/312365, arXiv:astro-ph/9909515

  • R. Wijnands, M. van der Klis, The broadband power spectra of x-ray binaries. ApJ 514, 939–944 (1999). https://doi.org/10.1086/306993, arXiv:astro-ph/9810342

  • T. Wilkinson, P. Uttley, Accretion disc variability in the hard state of black hole x-ray binaries. MNRAS 397, 666–676 (2009). https://doi.org/10.1111/j.1365-2966.2009.15008.x, arXiv:0905.0587

  • C.M. Wood et al., The varying kinematics of multiple ejecta from the black hole X-ray binary MAXI J1820 + 070. MNRAS 505, 3393–3403 (2021). https://doi.org/10.1093/mnras/stab1479, arXiv:2105.09529

  • J.T.L. Zwart et al., The arcminute microkelvin imager. MNRAS 391, 1545–1558 (2008). https://doi.org/10.1111/j.1365-2966.2008.13953.x, arXiv:0807.2469

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara De Marco .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

De Marco, B., Motta, S.E., Belloni, T.M. (2023). Probing Black-Hole Accretion Through Time Variability. In: Bambi, C., Santangelo, A. (eds) Handbook of X-ray and Gamma-ray Astrophysics. Springer, Singapore. https://doi.org/10.1007/978-981-16-4544-0_129-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4544-0_129-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4544-0

  • Online ISBN: 978-981-16-4544-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics