Skip to main content

Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals

  • Conference paper
Life at Interfaces and Under Extreme Conditions

Part of the book series: Developments in Hydrobiology ((DIHY,volume 151))

Abstract

The present paper reviews the current knowledge on diagenetic carbon transformations at the oxic/anoxic interface in coastal marine sediments. Oxygen microelectrodes have revealed that most coastal sediments are covered only by a thin oxic surface layer. The penetration depth of oxygen into sediments is controlled by the balance between downward transport and consumption processes. Consumption of oxygen is directly or indirectly caused by respiration of benthic organisms. Aerobic organisms have the enzymatic capacity for complete oxidation of organic carbon. Anaerobic decay occurs stepwise, involving several types of bacteria. Large organic molecules are first fermented into small moieties. These are then oxidized completely by anaerobic respirers using a sequence of electron acceptors: Mn4+, NO3 -, Fe3+, SO4 2- and CO2. The quantitative role of each electron acceptor depends on the sediment type and water depth. Since most of the sediment oxygen uptake is due to reoxidation of reduced metabolites, aerobic respiration is of limited importance. It has been suggested that sediments contain three major organic fractions: (1) fresh material that is oxidized regardless of oxygen conditions; (2) oxygen sensitive material that is only degraded in the presence of oxygen; and (3) totally refractory organic matter. Processes occurring at the oxic/anoxic boundaries are controlled by a number of factors. The most important are: (1) temperature, (2) organic supply, (3) light, (4) water currents, and (5) bioturbation. The role of bioturbation is important because the infauna creates a three-dimensional mosaic of oxic/anoxic interfaces in sediments. The volume of oxic burrow walls may be several times the volume of oxic surface sediment. The infauna increases the capacity, but not the overall organic matter decay in sediments, thus decreasing the pool of reactive organic matter. The increase in decay capacity is partly caused by injection of oxygen into the sediment, and thereby enhancing the decay of old, oxygen sensitive organic matter several fold. Finally, some future research directions to improve our understanding of diagenetic processes at the oxic/anoxic interface are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Softcover Book
USD 169.99
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aller, J.Y. & R.C. Aller, 1986. Evidence for localized enhancement of biological activity associated with tube and burrow structures in deep-sea at the HEBBLE site western North Atlantic. Deep Sea Res. 33: 755–790.

    Article  CAS  Google Scholar 

  • Aller, R.C., 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In McCall, P.L. & P.J.S. Tevesz (eds), Animal-Sediment Relations. Plenum, New York: 53–102.

    Google Scholar 

  • Aller, R.C., 1983. The importance of the diffusive permeability of animal burrow linings in determining marine sediment chemistry. J. mar. Res. 41: 299–322.

    Article  CAS  Google Scholar 

  • Aller, R.C., 1990. Bioturbation and manganese cycling in hemipelagic sediments. Phil. Trans. r. Soc, Lond. A 331: 51–68.

    Article  CAS  Google Scholar 

  • Aller, R.C. & J.Y. Aller, 1998. The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. J. mar. Res. 56: 905–936.

    Article  CAS  Google Scholar 

  • Aller, R.C. & J.Y. Yingst, 1978. Biogeochemistry of tubedwellings: a study of the sedentary polychaete Amphitrite ornata (Leidy). J. mar. Res. 36: 201–254.

    CAS  Google Scholar 

  • Andersen, F. O., 1996. Fate of organic carbon added as diatom cells to oxic and anoxic marine sediment microcosms. Mar. Ecol. Prog. Ser. 134: 225–233.

    Article  CAS  Google Scholar 

  • Andersen, F. ø. & E. Kristensen, 1988. The influence of macrofauna on estuarine benthic community metabolism — a microcosm study. Mar. Biol. 99: 591–603.

    Article  CAS  Google Scholar 

  • Archer, D., S. Emerson & C.R. Smith, 1989. Direct measurement of the diffusive sublayer at the deep sea floor using oxygen microelectrodes. Nature 340: 623–626.

    Article  Google Scholar 

  • Austin, B., 1988. Marine Microbiology. Cambridge Univ. Press, Cambridge. 222 pp.

    Google Scholar 

  • Banta, G.T., A.E. Giblin, J.E. Hobbie & J. Tucker, 1995. Benthic respiration and nitrogen release in Buzzards Bay, Massachusetts. J. mar. Res. 53: 107–135.

    Article  CAS  Google Scholar 

  • Banta, G.T., M. Holmer, M.H. Jensen & E. Kristensen, 1999. The effects of two polychaete worms, Nereis diversicolor and Arenicola marina, on aerobic and anerobic decomposition in a sandy marine sediment. Aquat. Microb. Ecol. 19: 189–204.

    Article  Google Scholar 

  • Benner, R., A.E. Maccubbin & R.E. Hodson, 1984. Preparation, characterization and microbial degradation of specifically radiolabelled [14C] lignocelluloses from marine and freshwater macrophytes. Apl. envir. Microbiol. 47: 381–389.

    CAS  Google Scholar 

  • Berner R.A., 1980. Early Diagenesis, a Theoretical Approach. Princeton University Press, New Jersey: 241 pp.

    Google Scholar 

  • Brandes, J.A. & A.H. Devol, 1995. Simultaneous nitrate and oxygen respiration in coastal sediments: evidence for discrete diagenesis. J. mar. Res. 53: 771–797.

    Article  CAS  Google Scholar 

  • Cai, W.-J. & C.E. Reimers, 1995. Benthic oxygen flux, bottom water oxygen concentration and core top organic carbon content in the deep northeast Pacific Ocean. Deep Sea Res. I 42: 1681–1699.

    Article  CAS  Google Scholar 

  • Calvert, S.E. & T.F. Pedersen, 1992. Organic carbon accumulation and preservation in marine sediments: how important is anoxia? In Whelan, J.K. & J.W. Farrington (eds), Organic Matter: Productivity, Accumulation and Preservation in Recent and Ancient Sediments. Columbia Univ. Press, New York: 231–263.

    Google Scholar 

  • Canfield, D.E., 1989. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Res. 36: 121–138.

    Article  CAS  Google Scholar 

  • Canfield, D.E., 1994. Factors influencing organic carbon preservation in marine sediments. Chem. Geol. 114: 315–329.

    Article  PubMed  CAS  Google Scholar 

  • Canfield, D.E., B.B. Jørgensen, H. Fossing, R. Glud, J. Gundersen, N.B. Ramsing, B. Thamdrup, J.W. Hansen, L.P. Nielsen & P.O.J. Hall, 1993a. Pathways of organic carbon oxidation in three continental margin sediments. Mar. Geol. 113: 27–40.

    Article  PubMed  CAS  Google Scholar 

  • Canfield, D.E., B. Thamdrup & J.W. Hansen, 1993b. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction and sulfate reduction. Geochim. Cosmochim. Acta 57: 3867–3884.

    Article  PubMed  CAS  Google Scholar 

  • Chanton, J.P., C.S. Martens & M.B. Goldhaber, 1987. Biogeochemical cycling in an organic-rich coastal marine basin. 7. Sulfur mass balance, oxygen uptake and sulfide retention. Geochim. Cosmochim. Acta 51: 1187–1199.

    CAS  Google Scholar 

  • Christensen, B., A. Vedel & E. Kristensen, 1999. Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding (Nereis diversicolor) and non suspension-feeding (Nereis virens) polychaetes. Mar. Ecol. Prog. Ser. (in press).

    Google Scholar 

  • Colijn, F. & V.N. de Jonge, 1984. Primary production of microphytobenthos in the Ems-Dollard estuary. Mar. Ecol. Prog. Ser. 14: 185–196.

    Article  Google Scholar 

  • Davey, J.T., 1994. The architecture of the burrow of Nereis diversicolor and its quantification in relation to sediment-water exchange. J. exp. mar. Biol. Ecol. 179: 115–129.

    Article  Google Scholar 

  • Defretin, R., 1971. The tubes of polychaete annelids. In Florkin, M. & E.H. Stotz (eds), Comprehensive Biochemistry, Vol. 26.2. Elsevier, Amsterdam: 713–747.

    Google Scholar 

  • Van Duyl, F.C., A.J. Kop, A. Kok & A.J.J. Sandee, 1992. The impact of organic matter and macrozoobenthos on bacterial and oxygen variables in marine sediment boxcosms. Neth. J. Sea Res. 29: 343–355.

    Article  Google Scholar 

  • Fenchel, T., 1996a. Worm burrows and oxic microniches in marine sediments. 1. Spatial and temporal scales. Mar. Biol. 127: 289–295.

    Google Scholar 

  • Fenchel, T., 1996b. Worm burrows and oxic microniches in marine sediments. 2. Distribution patterns of ciliated protozoa. Mar. Biol. 127: 297–301.

    Google Scholar 

  • Fenchel, T & T.H. Blackburn, 1979. Bacteria and Mineral Cycling, Academic Press, London: 225 pp.

    Google Scholar 

  • Fenchel, T., G.M. King & T.H. Blackburn, 1998. Bacterial Biogeochemistry: the Ecophysiology of Mineral Cycling. Academic Press, San Diego: 307 pp.

    Google Scholar 

  • Forster, S & G. Graf, 1995. Impact of irrigation on oxygen flux into the sediment: intermittent pumping by Callianassa subterranea and ‘piston pumping’ by Lattice conchilega. Mar. Biol. 123: 335–346.

    Article  Google Scholar 

  • Fossing, H. & B.B. Jørgensen, 1989. Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction. Biogeochemistry 8: 205–222.

    Article  CAS  Google Scholar 

  • Froelich P.N., G. Klinkhammer, M.L. Bender, N.A. Luedtke, G.R. Heath, D. Cullen, P. Dauphin, D. Hammond & B. Hartman, 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43: 1075–1095.

    Article  CAS  Google Scholar 

  • Glud, R.N., J.K. Gundersen, B.B. Jørgensen, N.P. Revsbech & H.D. Schulz, 1994. Diffusive and total oxygen uptake of deepsea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. DeepSea Res. I 41: 1767–1788.

    Article  CAS  Google Scholar 

  • Glud, R.N., N.B. Ramsing, J.K. Gundersen & I. Klimant, 1996. Planar optrodes: a new tool for fine scale measurements of twodimensional O2 distribution in benthic communities. Mar. Ecol. Prog. Ser. 140: 217–226.

    Article  Google Scholar 

  • Gundersen, J.K. & B.B. Jørgensen, 1990. Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor. Nature 345: 604–607.

    Article  CAS  Google Scholar 

  • Gust, G. & J.T. Harrison, 1981. Biological pumps at the sedimentwater interface: mechanistic evaluation of the alpheid shrimp Alpheus mackayi and its irrigation pattern. Mar. Biol. 64: 71–78.

    Article  Google Scholar 

  • Hansen, L.S. & T.H. Blackburn, 1991. Aerobic and anaerobic mineralization of organic material in marine sediment microcosms. Mar. Ecol. Prog. Ser. 75: 283–291.

    Article  Google Scholar 

  • Hansen, L.S. & T.H. Blackburn, 1992. Mineralization budgets in sediment microcosms: effect of the infauna and anoxic conditions. FEMS Microbiol. Ecol. 102: 33–43.

    Article  CAS  Google Scholar 

  • Hansen, K. & E. Kristensen, 1997. Impact of macrofaunal recolonization on benthic metabolism and nutrient fluxes in a shallow marine sediment previously overgrown with macroalgal mats. Estuar. coast. shelf Sci. 45: 613–628.

    Article  CAS  Google Scholar 

  • Hartnett, H.E., R.G. Keil, J.I. Hedges & A.H. Devol, 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391: 572–574.

    Article  CAS  Google Scholar 

  • Harvey, H.R., J.H. Tuttle & J.T. Bell, 1995. Kinetics of phytoplankton decay during simulated sedimentation: changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim. Cosmochim. Acta 59: 3367–3378.

    Article  CAS  Google Scholar 

  • Hedges, J.I. & R.G. Keil, 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49: 81–115.

    Article  CAS  Google Scholar 

  • Henrichs, S.M. & W.S. Reeburgh, 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 5: 191–237.

    Article  CAS  Google Scholar 

  • Henriksen, K. & W.M. Kemp, 1988. Nitrification in estuarine and coastal marine sediments. In Blackburn, T.H. & J. Sørensen (eds), Nitrogen Cycling in Coastal Marine Environments. John Wiley & Sons Ltd., Chichester: 207–249.

    Google Scholar 

  • Hertweck, G., 1986. Burrows of the polychaete Nereis virens Sars. Senckenberg. marit. 17: 319–331.

    Google Scholar 

  • Howarth, R.W., 1984. The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments. Biogeochemistry 1: 5–27.

    Article  CAS  Google Scholar 

  • Huettel, M. & G. Gust, 1992a. Impact of bioroughness on interfacial solute exchange in permeable sediments. Mar. Ecol. Prog. Ser. 89: 253–267.

    Article  Google Scholar 

  • Huettel, M. & G. Gust, 1992b. Solute release mechanisms from confined sediment cores in stirred benthic chambers and flume flows. Mar. Ecol. Prog. Ser. 82: 187–197.

    Article  Google Scholar 

  • Hulthe, G., S. Hulth & P.O.J. Hall, 1998. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochim. Cosmochim. Acta 62: 1319–1328.

    Article  CAS  Google Scholar 

  • Hylleberg, J. & K. Henriksen, 1980. The central role of bioturbation in sediment mineralization and element re-cycling. Ophelia, Suppl. 1: 1–16.

    CAS  Google Scholar 

  • Jahnke, R., 1985. A model of microenvironments in deep-sea sediments: formation and effects on porewater profiles. Limnol. Oceanogr. 30: 956–965.

    CAS  Google Scholar 

  • Jensen, K., N.P. Revsbech & L.P. Nielsen, 1993. Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Apl. envir. Microbiol. 59: 3287–3296.

    CAS  Google Scholar 

  • Jørgensen, B.B., 1977. Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar. Biol. 41: 7–17.

    Article  Google Scholar 

  • Jørgensen, B.B., 1983. Processes at the sediment-water interface. In Bolin, B. & R.B. Cook (eds), The Major Biogeochemical Cycles and Their Interactions. SCOPE 21, Stockholm: 477–509.

    Google Scholar 

  • Jørgensen, B.B., 1989. Biogeochemistry of chemoautotrophic bacteria. In Schlegel, H.G. & B. Bowien (eds), Autotrophic Bacteria. Science Tech Publ. & Springer-Verlag, Madison: 117–146.

    Google Scholar 

  • Jørgensen, B.B., 1996. Material flux in the sediment. In Jørgensen, B.B. & K. Richardson (eds), Eutrophication in Coastal Marine Ecosystems (Coastal and Estuarine Studies 52). American Geophysical Union, Washington DC: 115–135.

    Chapter  Google Scholar 

  • Jørgensen, B.B. & N.P. Revsbech, 1983. Colorless sulfur bacteria Beggiatoa spp. and Thiovulum spp. in O2 and H2S microgradients. Apl. envir. Microbiol. 45: 1261–1270.

    Google Scholar 

  • Jørgensen, B.B. & N.P. Revsbech, 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol. Oceanogr. 30: 111–122.

    Article  Google Scholar 

  • Jørgensen, B.B. & J. Sørensen, 1985. Seasonal cycles of O2, NO3 - and SO4 2- reduction in estuarine sediments: the significance of a NO3 - reduction maximum in spring. Mar. Ecol. Prog. Ser. 24: 65–74.

    Article  Google Scholar 

  • Keil, R.G., D.B. Montlucon, F.G. Prahl & J.I. Hedges, 1994. Sorptive preservation of labile organic matter in marine sediments. Nature 370: 549–552.

    Article  Google Scholar 

  • Kemp, W.M., P.A. Sampou, J. Garber, J. Tuttle & W.R. Bounton, 1992. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: roles of benthic and planktonic respiration and physical exchange processes. Mar. Ecol. Prog. Ser. 85: 137–152.

    Article  CAS  Google Scholar 

  • Kikuchi, E., 1987. Effect of the brackish deposit-feeding polychaetes Notomastus sp. (Capitellidae) and Neanthes japonica (Izuka) (Nereidae) on sedimentary O2 consumption and CO2 production rates. J. exp. mar. Biol. Ecol. 114: 15–25.

    Google Scholar 

  • Klimant, I., V. Meyer & M. Kühl, 1995. Fiber-optic oxygen microsensors, a new tool in aquatic biology. Limnol. Oceanogr. 40: 1159–1165.

    Article  CAS  Google Scholar 

  • Kristensen, E., 1984. Effect of natural concentrations on exchange of nutrients between a polychaete burrow in estuarine sediment and overlying water. J. exp. mar. Biol. Ecol. 75: 171–190.

    Article  Google Scholar 

  • Kristensen, E., 1985. Oxygen and inorganic nitrogen exchange in a Nereis virens (Polychaeta) bioturbated sediment-water system. J. Coast. Res. 1: 109–116.

    Google Scholar 

  • Kristensen, E., 1988. Benthic fauna and biogeochemical processes in marine sediments: microbial activities and fluxes. In Black-burn, T.H. & J. Sørensen (eds), Nitrogen Cycling in Coastal Marine Environments. John Wiley & Sons Ltd., Chichester: 275–299.

    Google Scholar 

  • Kristensen, E., 1989. Oxygen and carbon dioxide exchange in the polychaete Nereis virens: influence of ventilation activity and starvation. Mar. Biol. 101: 381–388.

    Article  Google Scholar 

  • Kristensen, E., 1993. Seasonal variations in benthic community metabolism and nitrogen dynamics in a shallow, organic poor Danish lagoon. Estuar. coast. shelf. Sci. 36: 565–586.

    Article  CAS  Google Scholar 

  • Kristensen, E., S.I. Ahmed & A.H. Devol, 1995. Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest? Limnol. Oceanogr. 40: 1430–1437.

    CAS  Google Scholar 

  • Kristensen, E., R.C. Aller & J.Y. Aller, 1991b. Oxic and anoxic decomposition of tubes from the burrowing sea-anemone Ceriantheopsis americanus: implications for sediment carbon and nitrogen dynamics. J. mar. Res. 49: 589–617.

    Article  CAS  Google Scholar 

  • Kristensen, E., F. Ø.Andersen & T.H. Blackburn, 1992. Effects of benthic macrofauna and temperature on degradation of macroalgal detritus: the fate of organic carbon. Limnol. Oceanogr. 37: 1404–1419.

    Article  Google Scholar 

  • Kristensen, E. & T.H. Blackburn, 1987. The fate of organic carbon and nitrogen in experimental marine sediment systems: influence of bioturbation and anoxia. J. mar. Res. 45: 231–257.

    Article  CAS  Google Scholar 

  • Kristensen, E. & K. Hansen, 1995. Decay of plant detritus in organic-poor marine sediment: production rates and stoichiometry of dissolved C and N compounds. J. mar. Res. 53: 675–702.

    Article  CAS  Google Scholar 

  • Kristensen, E. & K. Hansen, 1999. Transport of carbon dioxide and ammonium in bioturbated (Nereis diversicolor) coastal, marine sediments. Biogeochemistry 45: 147–168.

    Google Scholar 

  • Kristensen, E., M.H. Jensen & T.K. Andersen, 1985. The impact of polychaete (Nereis virens Sars) burrows on nitrification and nitrate reduction in estuarine sediments. J. exp. mar. Biol. Ecol. 85: 75–91.

    Article  CAS  Google Scholar 

  • Kristensen, E., M.H. Jensen & R.C. Aller, 1991a. Direct measurement of dissolved inorganic nitrogen exchange and denitri-fication in individual polychaete Nereis virens burrows. J. mar. Res. 49: 355–377.

    Article  CAS  Google Scholar 

  • Kristensen, E., M.H. Jensen & K.M. Jensen, 1998. Sulfur dynamics in sediments of Königshafen. In Gätje, C. & K. Reise (eds), Ökosystem Wattenmeer — Austausch-, Transport-und Stoffumwandlungsprozesse. Springer-Verlag, Berlin: 233–256.

    Google Scholar 

  • Kü hl, M. & B.B. Jørgensen, 1994. The light field of microbenthic communities: radiance distribution and microscale optics of sandy coastal sediments. Limnol. Oceanogr. 39: 1368–1398.

    Article  Google Scholar 

  • Lee, C., 1992. Controls on organic carbon preservation: the use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochim. Cosmochim. Acta 56: 3323–3335.

    Article  CAS  Google Scholar 

  • Mackin, J.E. & K.T. Swider, 1989. Organic matter decomposition pathways and oxygen consumption in coastal marine sediments. J. mar. Res. 47: 681–716.

    Article  CAS  Google Scholar 

  • Mayer, L.M., 1994. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta 58: 1271–1284.

    Article  CAS  Google Scholar 

  • Mayer, M.S., L. Schaffner & W.M. Kemp, 1995. Nitrification potentials of benthic macrofaunal tubes and burrow walls: effects of sediment NH44 + and animal irrigation behavior. Mar. Ecol. Prog. Ser. 121: 157–169.

    Article  CAS  Google Scholar 

  • Moller, J.S., 1996. Water masses, stratification and circulation. In Jørgensen, B.B. & K. Richardson (eds), Eutrophication in Coastal Marine Ecosystems (Coastal and Estuarine Studies 52). American Geophysical Union, Washington DC: 51–66.

    Chapter  Google Scholar 

  • Nielsen, L. R, 1992. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiol. Ecol. 86: 357–362.

    Article  CAS  Google Scholar 

  • Rasmussen, H. & B.B. Jørgensen, 1992. Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion. Mar. Ecol. Prog. Ser. 81: 289–303.

    Article  CAS  Google Scholar 

  • Reichardt, W., 1988. Impact of bioturbation by Arenicola marina on microbiological parameters in intertidal sediments. Mar. Ecol. Prog. Ser. 44: 149–158.

    Article  Google Scholar 

  • Reimers, C.E., 1987. An in situ microprofiling instrument for measuring interfacial pore water gradients: methods and oxygen profiles from the North Pacific Ocean. Deep Sea Res. 34: 2019–2035.

    Article  CAS  Google Scholar 

  • Reimers, C.E., K.M. Fischer, R. Merewether, K.L. Smith Jr. & R.A. Jahnke, 1986. Oxygen microprofiles measured in situ in deep ocean sediments. Nature 320: 741–744.

    Article  CAS  Google Scholar 

  • Reise, K., 1981. High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea. Hel-golënder wiss. Meeresunters. 34: 413–425.

    Article  Google Scholar 

  • Revsbech, N.P., 1989. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34: 474–478.

    Article  CAS  Google Scholar 

  • Revsbech, N.P. & B.B. Jørgensen, 1986. Microelectrodes: Their use in microbial ecology. Adv. Microb. Ecol. 9: 293–352.

    Google Scholar 

  • Revsbech, N.P., B.B. Jørgensen, T.H. Blackburn & Y. Cohen, 1983. Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnol. Oceanogr. 28: 1062–1074.

    Article  Google Scholar 

  • Revsbech, N.P., B.B. Jørgensen & O. Brix, 1981. Primary production in sediments measured by oxygen microprofiles H14CO3 1- fixation, and oxygen exchange methods. Limnol. Oceanogr. 26: 717–730.

    Article  CAS  Google Scholar 

  • Revsbech, N.P., B. Madsen & B.B. Jørgensen, 1986. Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data. Limnol. Oceanogr. 31: 293–304.

    Article  CAS  Google Scholar 

  • Revsbech, N.P., J. Sørensen, T.H. Blackburn & J.P. Lomholt, 1980. Distribution of oxygen in marine sediments measured with microelectrodes. Limnol. Oceanogr. 25: 403–411.

    Article  CAS  Google Scholar 

  • Revsbech, N.P. & D.M. Ward, 1983. Oxygen microelectrode that is insensitive to medium chemical composition: use in an acid microbial mat dominated by Cyanidium caldarium. Apl. envir. Microbiol. 45: 755–759.

    CAS  Google Scholar 

  • Riisgård, H.U., 1991. Suspension feeding in the polychaete Nereis diversicolor. Mar. Ecol. Prog. Ser. 70: 29–37.

    Article  Google Scholar 

  • Santschi, P.H., P. Bower, U.P. Nyffeler, A. Azvedo & W.S. Broecker, 1983. Estimates of the resistance of chemical transport posed by the deep-sea boundary layer. Limnol. Oceanogr. 28: 899–912.

    Article  CAS  Google Scholar 

  • Schink, B., 1988. Principles and limits of anaerobic degradation: Environmental and technological aspects. In Zehnder, A.J.B. (ed.), Biology of Anaerobic Microorganisms. John Wiley & Sons Ltd., New York: 771–846.

    Google Scholar 

  • Schlü ter, M., 1991. Organic carbon flux and oxygen penetration into sediments of the Weddell Sea: indicators for regional differences in export production. Mar. Chem. 35: 569–579.

    Article  Google Scholar 

  • Smith, K.L., Jr. & R.J. Baldwin, 1984. Seasonal fluctuations in deep-sea sediment community oxygen consumption: central and eastern North Pacific. Nature 307: 624–625.

    Article  CAS  Google Scholar 

  • Stigebrandt, A. & F. Wulff, 1987. A model for the dynamics of nutrients and oxygen in the Baltic proper. J. mar. Res. 45: 729–759.

    Article  CAS  Google Scholar 

  • Suess, E., 1980. Particulate organic carbon flux in the oceans — surface productivity and oxygen utilization. Nature 288: 260–263.

    Article  CAS  Google Scholar 

  • Sun, M.-Y, C. Lee & R.C. Aller, 1993b. Anoxic and oxic degradation of 14C-labeled chloropigments and a 14C-labeled diatom in Long Island Sound sediments. Limnol. Oceanogr. 38: 1438–1451.

    Article  CAS  Google Scholar 

  • Sun, M.-Y, C. Lee & R.C. Aller, 1993a. Laboratory studies of oxic and anoxic degradation of chlorophyll-a in Long Island Sound sediments. Geochim. Cosmochim. Acta 57: 147–158.

    Article  CAS  Google Scholar 

  • Sun, M.-Y., S.G. Wakeham & C. Lee, 1997. Rates and mechanisms of fatty acid degradation in oxic and anoxic coastal marine sediments of Long Island Sound, New York, U.S.A. Geochim. Cosmochim. Acta 61: 341–356.

    Article  CAS  Google Scholar 

  • Thamdrup, B, H. Fossing & B.B. Jørgensen, 1994. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim. Cosmochim. Acta 58: 5115–5130.

    Article  CAS  Google Scholar 

  • Thamdrup, B., J.W. Hansen & B.B. Jørgensen, 1998. Temperature dependence of aerobic respiration in a coastal sediment. FEMS Microbiol. Ecol. 25: 189–200.

    CAS  Google Scholar 

  • Vetter, E.F. & C.S. Hopkinson, Jr., 1985. Influence of white shrimp (Penaeus setiferus) on benthic metabolism and nutrient flux in a coastal marine ecosystem: Measurements in situ. Contr. Mar. Sci. 28: 95–107.

    Google Scholar 

  • Westrich, J.T. & R.A. Berner, 1984. The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol. Oceanogr. 29: 236–249.

    Article  CAS  Google Scholar 

  • Wetzel, M.A., P. Jensen & O. Giere, 1995. Oxygen/sulfide regime and nematode fauna associated with Arenicola marina burrows: new insights in the thiobios case. Mar. Biol. 124: 301–312.

    Article  Google Scholar 

  • Ziebis, W., S. Forster, M. Huettel & B.B. Jørgensen, 1996. Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed. Nature 382: 619–622.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerd Liebezeit Sabine Dittmann Ingrid Kröncke

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kristensen, E. (2000). Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. In: Liebezeit, G., Dittmann, S., Kröncke, I. (eds) Life at Interfaces and Under Extreme Conditions. Developments in Hydrobiology, vol 151. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4148-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4148-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5808-7

  • Online ISBN: 978-94-011-4148-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics