Skip to main content

Derivations and Observations of Prominence Bulk Motions and Mass

  • Chapter
  • First Online:
Solar Prominences

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 415))

Abstract

In this chapter we review observations and techniques for measuring both bulk flows in prominences and prominence mass. Measuring these quantities is essential to development and testing of models discussed throughout this book. Prominence flows are complex and various, ranging from the relatively linear flows along prominence spines to the complex, turbulent patterns exhibited by hedgerow prominences. Techniques for measuring flows include time slice and optical flow techniques used for motions in the plane of the sky and the use of spectral line profiles to determine Doppler velocities along the line of sight. Prominence mass measurement is chiefly done via continuum absorption measurements, but mass has also been estimated using cloud modeling and white light measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn, K., Chae, J., Cao, W., & Goode, P. R. (2010, September). Patterns of flows in an intermediate prominence observed by hinode. The Astrophysical Journal, 721, 74–79.

    Article  ADS  Google Scholar 

  • Alexander, C. E., Walsh, R. W., Régnier, S., Cirtain, J., Winebarger, A. R., Golub, L., et al. (2013, September). Anti-parallel EUV flows observed along active region filament threads with Hi-C. The Astrophysical Journal, 775, L32.

    Article  ADS  Google Scholar 

  • Antolin, P., & Rouppe van der Voort, L. (2012, February). Observing the fine structure of loops through high-resolution spectroscopic observations of coronal rain with the crisp instrument at the swedish solar telescope. The Astrophysical Journal, 745, 152.

    Article  ADS  Google Scholar 

  • Antolin, P., & Verwichte, E. (2011, August). Transverse oscillations of loops with coronal rain observed by hinode/solar optical telescope. The Astrophysical Journal, 736, 121.

    Article  ADS  Google Scholar 

  • Antolin, P., Yokoyama, T., & Van Doorsselaere, T. (2014, June). Fine strand-like structure in the solar corona from magnetohydrodynamic transverse oscillations. The Astrophysical Journal, 787, L22.

    Article  ADS  Google Scholar 

  • Anzer, U., & Heinzel, P. (2005, March). On the nature of dark extreme ultraviolet structures seen by SOHO/EIT and TRACE. The Astrophysical Journal, 622, 714–721.

    Article  ADS  Google Scholar 

  • Athay, R. G., & Illing, R. M. E. (1986, October). Analysis of the prominence associated with the coronal mass ejection of August 18, 1980. Journal of Geophysical Research, 91, 10961–10973.

    Article  ADS  Google Scholar 

  • Aulanier, G., & Schmieder, B. (2002, May). The magnetic nature of wide EUV filament channels and their role in the mass loading of CMEs. Astronomy and Astrophysics, 386, 1106–1122.

    Article  ADS  Google Scholar 

  • Ballester, J. L. (2014). Magnetism and dynamics of prominences: MHD waves. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 257–294). Springer.

    Google Scholar 

  • Beckers, J. M. (1964, September). A study of the fine structures in the solar chromosphere. PhD thesis, Sacramento Peak Observatory, Air Force Cambridge Research Laboratories, Mass.

    Google Scholar 

  • Berger, T. E., Liu, W., & Low, B. C. (2012). SDO/AIA detection of solar prominence formation within a coronal cavity. The Astrophysical Journal, 758, L37.

    Article  ADS  Google Scholar 

  • Berger, T. E., Shine, R. A., Slater, G. L., Tarbell, T. D., Title, A. M., Okamoto, T. J., et al. (2008, March). Hinode SOT observations of solar quiescent prominence dynamics. The Astrophysical Journal, 676, L89–L92.

    Article  ADS  Google Scholar 

  • Berger, T. E., Slater, G., Hurlburt, N., Shine, R., Tarbell, T., Title, A., et al. (2010, June). Quiescent prominence dynamics observed with the Hinode Solar Optical Telescope. I. Turbulent upflow plumes. The Astrophysical Journal, 716, 1288–1307.

    Google Scholar 

  • Billings, D. E. (1996). A guide to the solar corona, chapter 6B. New York: Academic Press.

    Google Scholar 

  • Chae, J. (2003, February). The formation of a prominence in noaa active region 8668. II. TRACE observations of jets and eruptions associated with canceling magnetic features. The Astrophysical Journal, 584, 1084–1094.

    Google Scholar 

  • Chae, J., Ahn, K., Lim, E.-K., Choe, G.S., & Sakurai, T. (2008, December). Persistent horizontal flows and magnetic support of vertical threads in a quiescent prominence. The Astrophysical Journal, 689, L73–L76.

    Article  ADS  Google Scholar 

  • Chae, J., & Sakurai, T. (2008, December). A test of three optical flow techniques-LCT, DAVE, and NAVE. The Astrophysical Journal, 689, 593–612.

    Article  ADS  Google Scholar 

  • Cirigliano, D., Vial, J.-C., & Rovira, M. (2004, September). Prominence corona transition region plasma diagnostics from SOHO observations. Solar Physics, 223, 95–118.

    Article  ADS  Google Scholar 

  • de Boer, C. R., Stellmacher, G., & Wiehr, E. (1998, June). The hot prominence periphery in EUV lines. Astronomy and Astrophysics, 334, 280–288.

    ADS  Google Scholar 

  • Engvold, O. (1976, August). The fine structure of prominences. I - Observations - H-alpha filtergrams. Solar Physics, 49, 283–295.

    Google Scholar 

  • Engvold, O. (2014) Description and classification of prominences. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 31–60). Springer.

    Google Scholar 

  • Fernley, J. A., Seaton, M. J., & Taylor, K. T. (1987, December). Atomic data for opacity calculations. VII - Energy levels, f values and photoionisation cross sections for He-like ions. Journal of Physics B Atomic Molecular Physics, 20, 6457–6476.

    Google Scholar 

  • Gibson, S. (2014). Coronal cavities: observations and implications for the magnetic environment of prominences. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 321–351). Springer.

    Google Scholar 

  • Gilbert, H., Kilper, G., & Alexander, D. (2007, December). Observational evidence supporting cross-field diffusion of neutral material in solar filaments. The Astrophysical Journal, 671, 978–989.

    Article  ADS  Google Scholar 

  • Gilbert, H., Kilper, G., Alexander, D., & Kucera, T. (2011, January). Comparing spatial distributions of solar prominence mass derived from coronal absorption. The Astrophysical Journal, 727, 25.

    Article  ADS  Google Scholar 

  • Gilbert, H. R., Falco, L. E., Holzer, T. E., & MacQueen, R. M. (2006, April). Application of a new technique for deriving prominence mass from SOHO EIT Fe XII (19.5 nm) absorption features. The Astrophysical Journal, 641, 606–610.

    Google Scholar 

  • Gilbert, H. R., Holzer, T. E., & MacQueen, R. M. (2005, January). A new technique for deriving prominence mass from SOHO/EIT Fe XII (19.5 Nanometers) absorption features. The Astrophysical Journal, 618, 524–536.

    Google Scholar 

  • Golub, L., Bookbinder, J., Deluca, E., Karovska, M., Warren, H., Schrijver, C. J., et al. (1999, May). A new view of the solar corona from the transition region and coronal explorer (TRACE). Physics of Plasmas, 6, 2205–2216.

    Article  ADS  Google Scholar 

  • Gopalswamy, N. (2014). The dynamic of eruptive prominences. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 379–408). Springer.

    Google Scholar 

  • Grechnev, V. V., Uralov, A. M., Slemzin, V. A., Chertok, I. M., Filippov, B. P., Rudenko, G. V. et al. (2014). A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. I. Unusual history of an eruptive filament. Solar Physics, 289, 289–318.

    Google Scholar 

  • Heinzel, P. (2014). Radiative transfer in solar prominences. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 101–128). Springer.

    Google Scholar 

  • Heinzel, P., Anzer, U., Schmieder, B., & Schwartz, P. (2003, September). EUV-filaments and their mass loading. In A. Wilson (Ed.), Solar variability as an input to the earth’s environment (vol. 535, pp. 447–457). Noordwijk: ESA Special Publication.

    Google Scholar 

  • Heinzel, P., Mein, N., & Mein, P. (1999, June). Cloud model with variable source function for solar Hα structures. II. Dynamical models. Astronomy and Astrophysics, 346, 322–328.

    Google Scholar 

  • Heinzel, P., Schmieder, B., Fárník, F., Schwartz, P., Labrosse, N., Kotr��, P., et al. (2008, October) Hinode, TRACE, SOHO, and ground-based observations of a quiescent prominence. The Astrophysical Journal, 686, 1383–1396.

    Article  ADS  Google Scholar 

  • Hundhausen, A. J. (1993, August). Sizes and locations of coronal mass ejections - SMM observations from 1980 and 1984–1989. Journal of Geophysical Research, 98, 13177.

    Article  ADS  Google Scholar 

  • Karpen, J. (2014). Plasma structure and dynamics. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 235–255). Springer.

    Google Scholar 

  • Karzas, W. J., & Latter, R. (1961, May). Electron radiative transitions in a coulomb field. The Astrophysical Journal, 6, 167.

    Article  ADS  Google Scholar 

  • Keady, J. J., & Kilcrease, D. P. (2000). Radiation. In A. N. Cox (Ed.), Allens astrophysical quantities (pp. 95–120). New York: AIP.

    Google Scholar 

  • Kilper, G., Gilbert, H., & Alexander, D. (2009, October). Mass composition in pre-eruption quiet sun filaments. The Astrophysical Journal, 704, 522–530.

    Article  ADS  Google Scholar 

  • Koutchmy, S., Slemzin, V., Filippov, B., Noens, J.-C., Romeuf, D., & Golub, L. (2008, May). Analysis and interpretation of a fast limb CME with eruptive prominence, C-flare, and EUV dimming. Astronomy and Astrophysics, 483, 599–608.

    Article  ADS  Google Scholar 

  • Kucera, T. A., Andretta, V., & Poland, A. I. (1998). Neutral hydrogen column depths in prominences using EUV absorption features. Solar Physics, 183, 91.

    Article  Google Scholar 

  • Kucera, T. A., de Pontieu, B., & Tovar, M. (2003). Prominence motions observed at high cadences in temperatures from 10,000 to 250,000 K. Solar Physics, 212, 81.

    Article  ADS  Google Scholar 

  • Kucera, T. A., Gilbert, H. R., & Karpen, J. T. (2014). Mass flows in a prominence spine as observed in EUV. The Astrophysical Journal, 790, 68.

    Article  ADS  Google Scholar 

  • Kucera, T. A., & Landi, E. (2006). Ultraviolet observations of prominence activation and cool loop dynamics. The Astrophysical Journal, 645, 1525.

    Article  ADS  Google Scholar 

  • Kucera, T. A., & Landi, E. (2008). An observation of low level heating in an erupting prominence. The Astrophysical Journal, 673, 611.

    Article  ADS  Google Scholar 

  • Landi, E., & Reale, F. (2013, July). Prominence plasma diagnostics through extreme-ultraviolet absorption. The Astrophysical Journal, 772, 71.

    Article  ADS  Google Scholar 

  • Leese, J. A., Novak, C. S., & Taylor, V. R. (1970). The determination of cloud pattern motions from geosynchronous satellite image data. Pattern Recognition, 2, 279–280.

    Article  Google Scholar 

  • Lin, Y., Engvold, O. R., & Wiik, J. E. (2003, September). Counterstreaming in a Large Polar Crown Filament. Solar Physics, 216, 109–120.

    Article  ADS  Google Scholar 

  • Liu, K., Wang, Y., Shen, C., & Wang, S. (2012, January). Critical height for the destabilization of solar prominences: Statistical results from STEREO observations. The Astrophysical Journal, 744, 168.

    Article  ADS  Google Scholar 

  • Liu, W., Berger, T. E., & Low, B. C. (2012, February). First SDO/AIA observation of solar prominence formation following an eruption: Magnetic dips and sustained condensation and drainage. The Astrophysical Journal, 745, L21.

    Article  ADS  Google Scholar 

  • Low, B. C., & Petrie, G. J. D. (2005, June). The internal structures and dynamics of solar quiescent prominences. The Astrophysical Journal, 626, 551–562.

    Article  ADS  Google Scholar 

  • Mackay, D. H., & Galsgaard, K. (2001, February). Evolution of a density enhancement in a stratified atmosphere with uniform vertical magnetic field. Solar Physics, 198, 289–312.

    Article  ADS  Google Scholar 

  • Mein, N., Mein, P., Heinzel, P., Vial, J.-C., Malherbe, J. M., & Staiger, J. (1996, May). Cloud model with variable source function for solar Hα structures. Astronomy and Astrophysics, 309, 275–283.

    ADS  Google Scholar 

  • November, L. J., & Simon, G. W. (1988, October). Precise proper-motion measurement of solar granulation. The Astrophysical Journal, 333, 427–442.

    Article  ADS  Google Scholar 

  • Orozco Suárez, D., Asensio Ramos, A., & Trujillo Bueno, J. (2012, December). Evidence for rotational motions in the feet of a quiescent solar prominence. The Astrophysical Journal, 761, L25.

    Article  ADS  Google Scholar 

  • Orozco Suárez, D., Díaz, A. J., Asensio Ramos, A., & Trujillo Bueno, J. (2014, April). Time evolution of plasma parameters during the rise of a solar prominence instability. The Astrophysical Journal, 785, L10.

    Article  ADS  Google Scholar 

  • Orrall, F. Q., & Schmahl, E. J. (1976). The prominence-corona interface compared with the chromosphere-corona transition region. Solar Physics, 50, 365–381.

    Article  ADS  Google Scholar 

  • Orrall, F. Q., & Schmahl, E. J. (1980, September). The H I Lyman continuum in solar prominences and its interpretation in the presence of inhomogeneities. The Astrophysical Journal, 240, 908–922.

    Article  ADS  Google Scholar 

  • Panasenco, O., Martin, S. F., & Velli, M. (2014, February). Apparent solar tornado-like prominences. Solar Physics, 289, 603–622.

    Article  ADS  Google Scholar 

  • Pécseli, H., & Engvold, O. (2000, May). Modeling of prominence threads in magnetic fields: Levitation by incompressible MHD waves. Solar Physics, 194, 73–86.

    Article  ADS  Google Scholar 

  • Penn, M. J. (2000, December). An erupting active region filament: three-dimensional trajectory and hydrogen column density. Solar Physics, 197, 313–335.

    Article  ADS  Google Scholar 

  • Rumph, T., Bowyer, S., & Vennes, S. (1994, June). Interstellar medium continuum, autoionization, and line absorption in the extreme ultraviolet. The Astronomical Journal, 107, 2108–2114.

    Article  ADS  Google Scholar 

  • Schmieder, B., Chandra, R., Berlicki, A., & Mein, P. (2010, May). Velocity vectors of a quiescent prominence observed by Hinode/SOT and the MSDP (Meudon). Astronomy and Astrophysics, 514, A68.

    Article  ADS  Google Scholar 

  • Schmieder, B., Mein, N., Deng, Y., Dumitrache, C., Malherbe, J.-M., Staiger, J., et al. (2004, September). Magnetic changes observed in the formation of two filaments in a complex active region: TRACE and MSDP observations. Solar Physics, 223, 119–141.

    Article  ADS  Google Scholar 

  • Schrijver, C. J. (2001, February). Catastrophic cooling and high-speed downflow in quiescent solar coronal loops observed with TRACE. Solar Physics, 198, 325–345.

    Article  ADS  Google Scholar 

  • Schuck, P. W. (2006, August). Tracking magnetic footpoints with the magnetic induction equation. The Astrophysical Journal, 646, 1358–1391.

    Article  ADS  Google Scholar 

  • Schwartz, P., Heinzel, P., Anzer, U., & Schmieder, B. (2004, July). Determination of the 3D structure of an EUV-filament observed by SoHO/CDS, SoHO/SUMER and VTT/MSDP. Astronomy and Astrophysics, 421, 323–338.

    Article  ADS  Google Scholar 

  • Schwartz, P., Schmieder, B., Heinzel, P., & Kotrč, P. (2012, December). Study of an extended EUV filament using SoHO/SUMER observations of the hydrogen lyman lines. II. Lyman α line observed during a multi-wavelength campaign. Solar Physics, 281, 707–728.

    Google Scholar 

  • Stenborg, G., Vourlidas, A., & Howard, R. A. (2008, February). A fresh view of the extreme-ultraviolet corona from the application of a new image-processing technique. The Astrophysical Journal, 674, 1201–1206.

    Article  ADS  Google Scholar 

  • Stewart, R. T., McCabe, M. K., Koomen, M. J., Hansen, R. T., & Dulk, G. A. (1974, May). Observations of coronal disturbances from 1 to 9 R sun . I: First event of 1973, January 11. Solar Physics, 36, 203–217.

    Google Scholar 

  • Tziotziou, K. (2007, May). Chromospheric cloud-model inversion techniques. In P. Heinzel, I. Dorotovič, & R. J. Rutten (Eds.), The physics of chromospheric plasmas. Astronomical Society of the Pacific conference series (vol. 368, pp. 217). San Francisco: Astronomical Society of the Pacific.

    Google Scholar 

  • van Ballegooijen, A. A., & Cranmer, S. R. (2010, March). Tangled magnetic fields in solar prominences. The Astrophysical Journal, 711, 164–178.

    Article  ADS  Google Scholar 

  • Vial, J.-C., Olivier, K., Philippon, A. A., Vourlidas, A., & Yurchyshyn, V. (2012, May). High spatial resolution VAULT H-Lyα observations and multiwavelength analysis of an active region filament. Astronomy and Astrophysics, 541, A108.

    Article  ADS  Google Scholar 

  • Vourlidas, A., Howard, R. A., Esfandiari, E., Patsourakos, S., Yashiro, S., & Michalek, G. (2010, October). Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. The Astrophysical Journal, 722, 1522–1538.

    Article  ADS  Google Scholar 

  • Wang, Y.-M. (1999, July). The jetlike nature of He II λ304 prominences. The Astrophysical Journal, 520, L71–L74.

    Article  ADS  Google Scholar 

  • Webb, D. (2014) Eruptive prominences and their association with coronal mass ejections. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 409–430). Springer.

    Google Scholar 

  • Wiik, J. E., Dere, K., & Schmieder, B. (1993). UV prominences observed with the HRTS: structure and physical properties. Astronomy and Astrophysics, 273, 267.

    ADS  Google Scholar 

  • Zirker, J. B., Engvold, O., & Martin, S. F. (1998, December). Counter-streaming gas flows in solar prominences as evidence for vertical magnetic fields. Nature, 396, 440–441.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry A. Kucera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kucera, T.A. (2015). Derivations and Observations of Prominence Bulk Motions and Mass. In: Vial, JC., Engvold, O. (eds) Solar Prominences. Astrophysics and Space Science Library, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-10416-4_4

Download citation

Publish with us

Policies and ethics