Skip to main content

Genetics and Epigenetics of ASD

  • Chapter
  • First Online:
Neurodevelopmental Pediatrics

Abstract

Autism spectrum disorder (ASD) is a childhood-onset, life-long neurodevelopmental disorder, which is both genetically and clinically heterogeneous. Over the past few decades, technical advances have resulted in the identification of multiple genetic, epigenetic, and environmental factors in ASD etiology. The wide use of chromosomal microarrays and next-generation sequencing technologies has led to the discovery of the contribution of rare, de novo single-nucleotide and copy-number variants, as well as somatic mosaicism, to the disorder. Thus far, around 100 genes or loci have been implicated in ASD, where no single gene or locus accounts for more than 1% of all ASD cases. These ASD risk genes converge on the following pathways: (i) mechanisms regulating gene expression (such as alternative splicing); (ii) epigenetic mechanisms (such as chromatin remodeling and DNA methylation); and (iii) synaptic and signaling development (such as altered neural circuit and GABA- and glutamate-mediated neurotransmission). In addition to implicated (epi)genetic factors, studies suggest that the environmental factors play a role in ASD. Some of these environmental factors include the maternal gestational environment, the effect of parental age, gut microbiota, and sex-specific traits. Despite the advances in our understanding of (epi)genetic and environmental influences in ASD etiology, there is still much of the unexplained etiology to be understood. Future research should focus on investigating the causality of implicated variants, integrating omics data, and understanding the shared interplay between genetic, epigenetic, and environmental risk factors in ASD etiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Softcover Book
USD 129.99
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, et al. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ. 2018;67(6):1–23.

    Article  Google Scholar 

  2. Folstein S, Rutter M. Infantile autism: a genetic study of 21 twin pairs. J Child Psychol Psychiatry. 1977;18:297–321.

    Article  CAS  Google Scholar 

  3. Lichtenstein P, Carlström E, Råstam M, Gillberg C, Anckarsäter H. The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am J Psychiatry. 2010;167(11):1357–63.

    Article  Google Scholar 

  4. Ozonoff S, Young GS, Carter A, Messinger D, Yirmiya N, Zwaigenbaum L, et al. Recurrence risk for autism spectrum disorders: a baby siblings research consortium study. Pediatrics. 2011;128:488–95.

    Article  Google Scholar 

  5. Ronald A, Hoekstra RA. Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet Part B Neuropsychiatr Genet. 2011;156:255–74.

    Article  Google Scholar 

  6. Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A. The familial risk of autism. JAMA J Am Med Assoc. 2014;311(17):1770–7.

    Article  CAS  Google Scholar 

  7. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011;68(11):1095–102.

    Article  Google Scholar 

  8. Colvert E, Tick B, McEwen F, Stewart C, Curran SR, Woodhouse E, et al. Heritability of autism spectrum disorder in a UK population-based twin sample. JAMA Psychiat. 2015;72(5):415–23.

    Article  Google Scholar 

  9. Sandin S, Lichtenstein P, Kuja-Halkola R, Hultman C, Larsson H, Reichenberg A. The heritability of autism spectrum disorder. JAMA. 2017;318(12):1182–4.

    Article  Google Scholar 

  10. Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014;95:5–23.

    Article  CAS  Google Scholar 

  11. Ganna A, Genovese G, Howrigan D, Byrnes A, Kurki M, Zekavat S, et al. Ultra-rare disruptive and damaging mutations influence educational attainment in the general population. Nat Neurosci. 2016;19(12):1563–5.

    Article  CAS  Google Scholar 

  12. Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet. 2012;13(8):565–75.

    Article  CAS  Google Scholar 

  13. Jiang YH, Yuen RKC, Jin X, Wang M, Chen N, Wu X, et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet. 2013;93:249.

    Article  CAS  Google Scholar 

  14. MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508(7497):469–76.

    Article  CAS  Google Scholar 

  15. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.

    Article  Google Scholar 

  16. Miles JH. Autism spectrum disorders—a genetics review. Genet Med. 2011;13(4):278–94.

    Article  Google Scholar 

  17. Moretti P, Zoghbi HY. MeCP2 dysfunction in Rett syndrome and related disorders. Curr Opin Genet Dev. 2006;16(3):276–81.

    Article  Google Scholar 

  18. Freitag CM. The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry. 2007;12:2–22.

    Article  CAS  Google Scholar 

  19. Devlin B, Scherer SW. Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev. 2012;22(3):229–37.

    Article  CAS  Google Scholar 

  20. Veenstra-VanderWeele J, Cook EH Jr. Molecular genetics of autism spectrum disorder. Mol Psychiatry. 2004;9:819–32.

    Article  CAS  Google Scholar 

  21. Holt R, Barnby G, Maestrini E, Bacchelli E, Brocklebank D, Sousa I, et al. Linkage and candidate gene studies of autism spectrum disorders in European populations. Eur J Hum Genet. 2010;18(9):1013–20.

    Article  CAS  Google Scholar 

  22. Vorstman JAS, Staal WG, Van Daalen E, Van Engeland H, Hochstenbach PFR, Franke L. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry. 2006;11(1):18–28.

    Article  CAS  Google Scholar 

  23. Lammert DB, Howell BW. RELN mutations in autism spectrum disorder. Front Cell Neurosci. 2016;10:1–9.

    Article  Google Scholar 

  24. Klei L, Sanders SJ, Murtha MT, Hus V, Lowe JK, Willsey A, et al. Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism. 2012;3:9.

    Article  Google Scholar 

  25. Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Perlis RH, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45(9):984–94.

    Article  CAS  Google Scholar 

  26. Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, et al. Most genetic risk for autism resides with common variation. Nat Genet. 2014;46(8):881–5.

    Article  CAS  Google Scholar 

  27. Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 2015;16(9):551–63.

    Article  CAS  Google Scholar 

  28. The Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism. 2017;8:21.

    Article  Google Scholar 

  29. Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 2013;9:3.

    Article  Google Scholar 

  30. Weiner DJ, Wigdor EM, Ripke S, Walters RK, Kosmicki JA, Grove J, et al. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat Genet. 2017;49(7):978–85.

    Article  CAS  Google Scholar 

  31. Clarke T, Lupton MK, Fernandez-pujals AM, Starr J, Davies G, Cox S, et al. Common polygenic risk for autism spectrum disorder (ASD) is associated with cognitive ability in the general population. Mol Psychiatry. 2015;21(3):419–25.

    Article  Google Scholar 

  32. Folstein SE, Rosen-Sheidley B. Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet. 2001;2(12):943–55.

    Article  CAS  Google Scholar 

  33. Manning MA, Cassidy SB, Clericuzio C, Cherry AM, Schwartz S, Hudgins L, et al. Terminal 22q deletion syndrome: a newly recognized cause of speech and language disability in the autism spectrum. Pediatrics. 2004;114(2):451–7.

    Article  Google Scholar 

  34. Miles JH, Takahashi TN, Bagby S, Sahota PK, Vaslow DF, Wang CH, et al. Essential versus complex autism: definition of fundamental prognostic subtypes. Am J Med Genet. 2005;135A(2):171–80.

    Article  Google Scholar 

  35. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science (80- ). 2004;305(7):525–8.

    Article  CAS  Google Scholar 

  36. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36(9):949–51.

    Article  CAS  Google Scholar 

  37. Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94(5):677–94.

    Article  CAS  Google Scholar 

  38. Itsara A, Wu H, Smith JD, Nickerson DA, Romieu I, London SJ, et al. De novo rates and selection of large copy number variation. Genome Res. 2010;20(11):1469–81.

    Article  CAS  Google Scholar 

  39. Sanders S, He X, Willsey A, Ercan-Sencicek A, Samocha K, Cicek A, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron. 2015;87(6):1215–33.

    Article  CAS  Google Scholar 

  40. Doherty JL, Owen MJ. Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome Med. 2014;6(4):1–13.

    Article  Google Scholar 

  41. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Ragnheidur F, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008;358(7):667–75.

    Article  CAS  Google Scholar 

  42. Kumar RA, Karamohamed S, Sudi J, Conrad DF, Brune C, Badner JA, et al. Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet. 2008;17(4):628–38.

    Article  CAS  Google Scholar 

  43. Walker S, Scherer SW. Identification of candidate intergenic risk loci in autism spectrum disorder. BMC Genomics. 2013;14:499.

    Article  CAS  Google Scholar 

  44. Wiśniowiecka-Kowalnik B, Nesteruk M, Peters SU, Xia Z, Cooper ML, Savage S, et al. Intragenic rearrangements in NRXN1 in three families with autism spectrum disorder, developmental delay, and speech delay. Am J Med Genet Part B Neuropsychiatr Genet. 2010;153(5):983–93.

    Google Scholar 

  45. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466(7304):368–72.

    Article  CAS  Google Scholar 

  46. Yuen RKC, Merico D, Bookman M, Howe JL, Thiruvahindrapuram B, Patel RV, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20(4):602–11.

    Article  CAS  Google Scholar 

  47. Marshall CR, Scherer SW. Detection and characterization of copy number variation in autism Spectrum disorder. In: Walker JM, Feuk L, editors. Genomic structural variants: methods and protocols. 1st ed. Humana Press; 2012. p. 115–37.

    Chapter  Google Scholar 

  48. Girirajan S, Eichler EE. Phenotypic variability and genetic susceptibility to genomic disorders. Hum Mol Genet. 2010;19(R2):176–87.

    Article  Google Scholar 

  49. Girirajan S, Rosenfeld JA, Coe BP, Parikh S, Friedman N, Goldstein A, et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med. 2012;367(14):1321–31.

    Article  CAS  Google Scholar 

  50. Pizzo L, Jensen M, Polyak A, Rosenfeld JA, Mannik K, Krishnan A, et al. Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants. Genet Med. 2018;21:816–25.

    Article  Google Scholar 

  51. Qaiser F, Yin Y, Mervis CB, Morris CA, Klein-Tasman BP, Tam E, et al. Rare and low frequency genomic variants impacting neuronal functions modify the Dup7q11.23 phenotype. Orphanet J Rare Dis [Internet]. 2021;16(1):1–11. https://doi.org/10.1186/s13023-020-01648-6.

    Article  Google Scholar 

  52. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Science (80- ). 2007;316:445–9.

    Article  CAS  Google Scholar 

  53. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009;459(7246):569–72.

    Article  CAS  Google Scholar 

  54. Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.

    Article  CAS  Google Scholar 

  55. McRae JF, Clayton S, Fitzgerald TW, Kaplanis J, Prigmore E, Rajan D, et al. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542(7642):433–8.

    Article  CAS  Google Scholar 

  56. Turner NT, Bradley PC, Dickel DE, Hoekzema K, Nelson BJ, Zody MC, et al. Genomic patterns of de novo mutation in simplex autism. Cell. 2017;171(3):710–22.

    Article  CAS  Google Scholar 

  57. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Ercument Cicek A, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209–15.

    Article  Google Scholar 

  58. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–50.

    Article  Google Scholar 

  59. Yuen RK, Merico D, Cao H, Pellecchia G, Alipanahi B, Thiruvahindrapuram B, et al. Genome-wide characteristics of de novo mutations in autism. NPJ Genom Med. 2016;3(1):160271–1602710.

    Google Scholar 

  60. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012;488:471–5.

    Article  CAS  Google Scholar 

  61. Short PJ, McRae JF, Gallone G, Sifrim A, Won H, Geschwind DH, et al. De novo mutations in regulatory elements in neurodevelopmental disorders. Nature. 2018;555(7698):611–6.

    Article  CAS  Google Scholar 

  62. An J-Y, Lin K, Zhu L, Werling DM, Dong S, Brand H, et al. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science (80- ). 2018;362:1270.

    Article  Google Scholar 

  63. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485(7397):237–41.

    Article  CAS  Google Scholar 

  64. O’Roak BJ, Stessman HA, Boyle EA, Witherspoon KT, Martin B, Lee C, et al. Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat Commun. 2014;5(5595):1–6.

    Google Scholar 

  65. Lim ET, Raychaudhuri S, Sanders SJ, Stevens C, Sabo A, MacArthur DG, et al. Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders. Neuron. 2013;77(2):235–42.

    Article  CAS  Google Scholar 

  66. Yu TW, Chahrour MH, Coulter ME, Jiralerspong S, Okamura-Ikeda K, Ataman B, et al. Using whole-exome sequencing to identify inherited causes of autism. Neuron. 2013;77(2):259–73.

    Article  CAS  Google Scholar 

  67. Yuen RKC, Thiruvahindrapuram B, Merico D, Walker S, Tammimies K, Hoang N, et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat Med. 2015;21(2):185–91.

    Article  CAS  Google Scholar 

  68. Krumm N, Turner TN, Baker C, Vives L, Mohajeri K, Witherspoon K, et al. Excess of rare, inherited truncating mutations in autism. Nat Genet. 2015;47(6):582–8.

    Article  CAS  Google Scholar 

  69. Brandler WM, Antaki D, Gujral M, Kleiber ML, Whitney J, Maile MS, et al. Paternally inherited cis-regulatory structural variants are associated with autism. Science (80- ). 2018;360(6386):327–31.

    Article  CAS  Google Scholar 

  70. Zhao X, Leotta A, Kustanovich V, Lajonchere C, Geschwind DH, Law K, et al. A unified genetic theory for sporadic and inherited autism. Proc Natl Acad Sci. 2007;104(31):12831–6.

    Article  CAS  Google Scholar 

  71. Lim ET, Uddin M, De Rubeis S, Chan Y, Kamumbu AS, Zhang X, et al. Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat Neurosci. 2017;20(9):1217–24.

    Article  CAS  Google Scholar 

  72. Krupp DR, Barnard RA, Duffourd Y, Evans SA, Mulqueen RM, Bernier R, et al. Exonic mosaic mutations contribute risk for autism spectrum disorder. Am J Hum Genet. 2017;101(3):369–90.

    Article  CAS  Google Scholar 

  73. Alonso-Gonzalez A, Rodriguez-Fontenla C, Carracedo A. De novo mutations (DNMs) in autism spectrum disorder (ASD): pathway and network analysis. Front Genet. 2018;9(SEP)

    Google Scholar 

  74. Dolzhenko E, van Vugt JJFA, Shaw RJ, Bekritsky MA, Van Blitterswijk M, Narzisi G, et al. Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res. 2017;27(11):1895–903.

    Article  CAS  Google Scholar 

  75. Bahlo M, Bennett MF, Degorski P, Tankard RM, Delatycki MB, Lockhart PJ. Recent advances in the detection of repeat expansions with short-read next-generation sequencing. F1000Res. 2018;7(736):1–11.

    Google Scholar 

  76. Dashnow H, Lek M, Phipson B, Halman A, Sadedin S, Lonsdale A, et al. STRetch: detecting and discovering pathogenic short tandem repeat expansions. Genome Biol. 2018;19(1):1–13.

    Article  Google Scholar 

  77. Dolzhenko E, Bennett MF, Richmond PA, Trost B, Chen S, van Vugt JJFA, et al. ExpansionHunter Denovo: a computational method for locating known and novel repeat expansions in short-read sequencing data. Genome Biol. 2020;21(102):863035.

    Google Scholar 

  78. Galimberti D, Reif A, Dell B, Kittel-schneider S, Leonhard C, Herr A, et al. The C9ORF72 hexanucleotide repeat expansion is a rare cause of schizophrenia. Neurobiol Aging. 2014;35(5):1214.e7e-1214.e10.

    Article  Google Scholar 

  79. Ishiura H, Doi K, Mitsui J, Yoshimura J, Matsukawa MK, Fujiyama A, et al. Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat Genet. 2018;50(4):581–90.

    Article  CAS  Google Scholar 

  80. Trost B, Engchuan W, Nguyen CM, Thiruvahindrapuram B, Dolzhenko E, Backstrom I, et al. Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature. 2020;586(7827):80–6.

    Article  CAS  Google Scholar 

  81. Mojarad BA, Yin Y, Manshaei R, Backstrom I, Costain G, Heung T, et al. Genome sequencing broadens the range of contributing variants with clinical implications in schizophrenia. Transl Psychiatry [Internet]. 2021;11(1):1–12. https://doi.org/10.1038/s41398-021-01211-2.

    Article  CAS  Google Scholar 

  82. Noor A, Whibley A, Marshall CR, Gianakopoulos PJ, Piton A, Carson AR, et al. Disruption at the PTCHD1 locus on Xp22.11 in autism spectrum disorder and intellectual disability. Sci Transl Med. 2010;2(49):1–16.

    Article  Google Scholar 

  83. Barry G. Integrating the roles of long and small non-coding RNA in brain function and disease. Mol Psychiatry. 2014;19(4):410–6.

    Article  CAS  Google Scholar 

  84. Varga NÁ, Pentelényi K, Balicza P, Gézsi A, Reményi V, Hársfalvi V, et al. Mitochondrial dysfunction and autism: comprehensive genetic analyses of children with autism and mtDNA deletion. Behav Brain Funct. 2018;14(1):1–14.

    Article  Google Scholar 

  85. Wright CF, FitzPatrick DR, Firth HV. Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet. 2018;19:253–68.

    Article  CAS  Google Scholar 

  86. Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger JI, Hallmayer JF. Autism genetics: opportunities and challenges for clinical translation. Nat Rev Genet. 2017;18(6):362–76.

    Article  CAS  Google Scholar 

  87. Chahrour M, O’Roak BJ, Santini E, Samaco RC, Kleiman RJ, Manzini MC. Current perspectives in autism spectrum disorder: from genes to therapy. J Neurosci. 2016;36(45):11402–10.

    Article  CAS  Google Scholar 

  88. Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell. 2013;155(5):1008–21.

    Article  CAS  Google Scholar 

  89. Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell. 2013;155(5):997–1007.

    Article  CAS  Google Scholar 

  90. Ben-David E, Shifman S. Networks of neuronal genes affected by common and rare variants in autism spectrum disorders. PLoS Genet. 2012;8:3.

    Article  Google Scholar 

  91. Hormozdiari F, Penn O, Borenstein E, Eichler EE. The discovery of integrated gene networks for autism and related disorders. Genome Res. 2015:142–54.

    Google Scholar 

  92. Gropman AL, Batshaw ML. Epigenetics, copy number variation, and other molecular mechanisms underlying neurodevelopmental disabilities: new insights and diagnostic approaches. J Dev Behav Pediatr. 2010;31(7):582–91.

    Article  Google Scholar 

  93. Van Buggenhout G, Fryns JP. Angelman syndrome (AS, MIM 105830). Eur J Hum Genet. 2009;17(11):1367–73.

    Article  Google Scholar 

  94. van Vliet Oates NA, Whitelaw EJ. Epigenetic mechanisms in the context of complex diseases. Cell Mol Life Sci. 2007;64(12):1531–46.

    Article  Google Scholar 

  95. Houston I, Peter CJ, Mitchell A, Straubhaar J, Rogaev E, Akbarian S. Epigenetics in the human brain. Neuropsychopharmacology 2012. 2013;38(1):183–97.

    CAS  Google Scholar 

  96. Loke YJ, Hannan AJ, Craig JM. The role of epigenetic change in autism spectrum disorders. Front Neurol. 2015;6(MAY):1–18.

    Google Scholar 

  97. Ladd-Acosta C, Hansen KD, Briem E, Fallin MD, Kaufmann WE, Feinberg AP. Common DNA methylation alterations in multiple brain regions in autism. Mol Psychiatry. 2014;19(8):862–71.

    Article  CAS  Google Scholar 

  98. Nardone S, Sharan Sams D, Reuveni E, Getselter D, Oron O, Karpuj M, et al. DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways. Transl Psychiatry. 2014;4(9):e433.

    Article  CAS  Google Scholar 

  99. Nardone S, Sams DS, Zito A, Reuveni E, Elliott E. Dysregulation of cortical neuron DNA methylation profile in autism spectrum disorder. Cereb Cortex. 2017;27(12):5739–54.

    Article  Google Scholar 

  100. Kinde B, Gabel HW, Griffith EC, Gilbert CS, Greenberg ME. Reading the unique DNA methylation landscape of the brain: non-CpG methylation, hydroxymethylation, and MeCP2. Proc Natl Acad Sci. 2015;112(22):6800–6.

    Article  CAS  Google Scholar 

  101. Hahn MA, Qiu R, Wu X, Li AX, Zhang H, Wang J, et al. Dynamics of 5-Hydroxymethylcytosine and chromatin Marks inMammalian neurogenesis. Cell Rep. 2013;3(2):291–300.

    Article  CAS  Google Scholar 

  102. Jin SG, Wu X, Li AX, Pfeifer GP. Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res. 2011;39(12):5015–24.

    Article  CAS  Google Scholar 

  103. Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011;473(7347):398–404.

    Article  CAS  Google Scholar 

  104. Szulwach KE, Li X, Li Y, Song C, Wu H, Dai Q, et al. 5-hmC–mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci. 2011;14(12):1607–16.

    Article  CAS  Google Scholar 

  105. Wen L, Li X, Yan L, Tan Y, Li R, Zhao Y, et al. Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain. Genome Biol. 2014;15:3.

    Article  Google Scholar 

  106. Lin IH, Chen YF, Hsu MT. Correlated 5-hydroxymethylcytosine (5hmC) and gene expression profiles underpin gene and organ-specific epigenetic regulation in adult mouse brain and liver. PLoS One. 2017;12(1):1–25.

    Article  Google Scholar 

  107. Papale LA, Zhang Q, Li S, Chen K, Keleş S, Alisch RS. Genome-wide disruption of 5-hydroxymethylcytosine in a mouse model of autism. Hum Mol Genet. 2015;24(24):7121–31.

    CAS  Google Scholar 

  108. Sun W, Poschmann J, Cruz-Herrera del Rosario R, Parikshak NN, Hajan HS, Kumar V, et al. Histone acetylome-wide association study of autism spectrum disorder. Cell. 2016;167(5):1385–1397.e11.

    Article  CAS  Google Scholar 

  109. Hamdan FF, Daoud H, Rochefort D, Piton A, Gauthier J, Langlois M, et al. De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. Am J Hum Genet. 2010;87(5):671–8.

    Article  CAS  Google Scholar 

  110. Bacon C, Schneider M, Le Magueresse C, Froehlich H, Sticht C, Gluch C, et al. Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Mol Psychiatry. 2014;20(5):632.

    Article  Google Scholar 

  111. Gharani N, Benayed R, Mancuso V, Brzustowicz LM, Millonig JH. Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Mol Psychiatry. 2004;9(5):474–84.

    Article  CAS  Google Scholar 

  112. Irimia M, Weatheritt RJ, Ellis JD, Parikshak NN, Gonatopoulos-Pournatzis T, Babor M, et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell. 2014;159(7):1511–23.

    Article  CAS  Google Scholar 

  113. Gonatopoulos-Pournatzis T, Wu M, Braunschweig U, Roth J, Han H, Best AJ, et al. Genome-wide CRISPR-Cas9 interrogation of splicing networks reveals a mechanism for recognition of autism-misregulated neuronal microexons. Mol Cell. 2018;72(3):510–24.e12

    Article  CAS  Google Scholar 

  114. Sun E, Shi Y. MicroRNAs: small molecules with big roles in neurodevelopment and diseases. Exp Neurol. 2015;268:46–53.

    Article  CAS  Google Scholar 

  115. Hicks SD, Middleton FA. A comparative review of microRNA expression patterns in autism spectrum disorder. Front Psych. 2016;7(11):176.

    Google Scholar 

  116. Sellier C, Hwang VJ, Dandekar R, Durbin-Johnson B, Charlet-Berguerand N, Ander BP, et al. Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syndrome. PLoS One. 2014;9(8):–e103884.

    Google Scholar 

  117. Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH, et al. Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics. 2008;9(3):153–61.

    Article  CAS  Google Scholar 

  118. Ebrahimi-Fakhari D, Sahin M. Autism and the synapse: emerging mechanisms and mechanism-based therapies. Curr Opin Neurol. 2015;28(2):91–102.

    Article  CAS  Google Scholar 

  119. Südhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455(7215):903–11.

    Article  Google Scholar 

  120. Won H, Mah W, Kim E. Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Mol Neurosci. 2013;6:19.

    Article  Google Scholar 

  121. Minshew NJ, Williams DL. The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch Neurol. 2007;64(7):945–50.

    Article  Google Scholar 

  122. Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472(7344):437–42.

    Article  Google Scholar 

  123. Piton A, Jouan L, Rochefort D, Dobrzeniecka S, Lachapelle K, Dion PA, et al. Analysis of the effects of rare variants on splicing identifies alterations in GABAA receptor genes in autism spectrum disorder individuals. Eur J Hum Genet. 2012;21(7):749–56.

    Article  Google Scholar 

  124. Horder J, Petrinovic MM, Mendez MA, Bruns A, Takumi T, Spooren W, et al. Glutamate and GABA in autism spectrum disorder—a translational magnetic resonance spectroscopy study in man and rodent models. Transl Psychiatry. 2018;8(1):106.

    Article  Google Scholar 

  125. Gogolla N, LeBlanc JJ, Quast KB, Südhof TC, Fagiolini M, Hensch TK. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J Neurodev Disord. 2009;1(2):172–81.

    Article  Google Scholar 

  126. Kubas B, Kułak W, Sobaniec W, Tarasow E, Łebkowska U, Walecki J. Metabolite alterations in autistic children: a 1H MR spectroscopy study. Adv Med Sci. 2012;57(1):152–6.

    Article  CAS  Google Scholar 

  127. Drenthen GS, Barendse EM, Aldenkamp AP, van Veenendaal TM, Puts NAJ, Edden RAE, et al. Altered neurotransmitter metabolism in adolescents with high-functioning autism. Psychiatry Res Neuroimaging. 2016;256:44–9.

    Article  Google Scholar 

  128. Chaste P, Leboyer M. Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci. 2012;14(3):281–92.

    Article  Google Scholar 

  129. Gardener H, Spiegelman D, Buka SL. Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatrics. 2011;128(2):344–55.

    Article  Google Scholar 

  130. Roberts AL, Lyall K, Rich-Edwards JW, Ascherio A, Weisskopf MG. Association of maternal exposure to childhood abuse with elevated risk for autism in offspring. JAMA Psychiat. 2013;70(5):508–15.

    Article  Google Scholar 

  131. Beach SRH, Brody GH, Todorov AA, Gunter TD, Philibert RA. Methylation at SLC6A4 is linked to family history of child abuse: an examination of the Iowa adoptee sample. Am J Med Genet Part B Neuropsychiatr Genet. 2010;153B(2):710–3.

    Article  CAS  Google Scholar 

  132. Ronald A, Pennell CE, Whitehouse AJO. Prenatal maternal stress associated with ADHD and autistic traits in early childhood. Front Psychol. 2011;1(1):1–8.

    Google Scholar 

  133. Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, et al. The epidemiology of autism spectrum disorders. Annu Rev Public Health. 2007;28(1):235–58.

    Article  Google Scholar 

  134. Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013;309(16):1696–703.

    Article  CAS  Google Scholar 

  135. Henry TR. The history of valproate in clinical neuroscience. Psychopharmacol Bull. 2003;37(Suppl 2):5–16.

    Google Scholar 

  136. Williams PG, Hersh JH. A male with fetal valproate syndrome and autism. Dev Med Child Neurol. 2008;39(9):632–4.

    Article  Google Scholar 

  137. Kataoka S, Takuma K, Hara Y, Maeda Y, Ago Y, Matsuda T. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int J Neuropsychopharmacol. 2013;16(1):91–103.

    Article  CAS  Google Scholar 

  138. Suren P, Roth C, Bresnahan M, Haugen M, Hornig M, Hirtz D, et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA J Am Med Assoc. 2013;309(6):570–7.

    Article  CAS  Google Scholar 

  139. Schmidt R, Tancredi D, Ozonoff S, Hansen RL, Haritala J, Allayee H, et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (childhood autism risks from genetics) case-control study. Am J Clin Nutr. 2012;96(1):80–9.

    Article  CAS  Google Scholar 

  140. Wiens D, Desoto MC. Is high folic acid intake a risk factor for autism?—a review. Brain Sci. 2017;7:11.

    Article  Google Scholar 

  141. Grabrucker AM. Environmental factors in autism. Front Psychiatry. 2013;3(JAN):1–13.

    Google Scholar 

  142. Idring S, Magnusson C, Lundberg M, Ek M, Rai D, Svensson AC, et al. Parental age and the risk of autism spectrum disorders: findings from a Swedish population-based cohort. Int J Epidemiol. 2014;43(1):107–15.

    Article  Google Scholar 

  143. Flatscher-Bader T, Foldi CJ, Chong S, Whitelaw E, Moser RJ, Burne THJ, et al. Increased de novo copy number variants in the offspring of older males. Transl Psychiatry. 2011;1(8):e34–8.

    Article  CAS  Google Scholar 

  144. Lee BK, McGrath JJ. Advancing parental age and autism: multifactorial pathways. Trends Mol Med. 2015;21(2):118–25.

    Article  Google Scholar 

  145. Smith RG, Fernandes C, Kember R, Schalkwyk LC, Buxbaum J, Reichenberg A, et al. Transcriptomic changes in the frontal cortex associated with paternal age. Mol Autism. 2014;5(1):24.

    Article  Google Scholar 

  146. Kalkbrenner AE, Schmidt RJ, Penlesky AC. Environmental chemical exposures and autism spectrum disorders: a review of the epidemiological evidence. Curr Probl Pediatr Adolesc Health Care. 2014;44(10):277–318.

    Article  Google Scholar 

  147. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–70.

    Article  CAS  Google Scholar 

  148. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156(1):84–96.

    Article  Google Scholar 

  149. McElhanon BO, McCracken C, Karpen S, Sharp WG. Gastrointestinal symptoms in autism Spectrum disorder: a meta-analysis. Pediatrics. 2014;133(5):872–83.

    Article  Google Scholar 

  150. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5(1):24.

    Article  Google Scholar 

  151. Rose DR, Yang H, Serena G, Sturgeon C, Ma B, Careaga M, et al. Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain Behav Immun. 2018;70:354–68.

    Article  CAS  Google Scholar 

  152. Schaafsma SM, Gagnidze K, Reyes A, Norstedt N, Månsson K, Francis K, et al. Sex-specific gene–environment interactions underlying ASD-like behaviors. Proc Natl Acad Sci. 2017;114(6):1383–8.

    Article  CAS  Google Scholar 

  153. Werling D, Geschwind D. Sex differences in autism spectrum disorders. Curr Opin Neurol. 2014;26(2):146–53.

    Article  Google Scholar 

  154. Tuchman R, Cuccaro M. Epilepsy and autism: neurodevelopmental perspective. Curr Neurol Neurosci Rep. 2011;11:428–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan K. C. Yuen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mojarad, B.A., Qaiser, F., Yuen, R.K.C. (2023). Genetics and Epigenetics of ASD. In: Eisenstat, D.D., Goldowitz, D., Oberlander, T.F., Yager, J.Y. (eds) Neurodevelopmental Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-031-20792-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20792-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20791-4

  • Online ISBN: 978-3-031-20792-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics