Skip to main content

Advanced X-ray Imaging Technology

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

Abstract

Since their discovery by Wilhelm Conrad Röntgen in 1895, X-rays have become the most widely available, typically fastest, and usually most cost-effective medical imaging modality today. From the early radiographic approaches using X-ray films as detectors, the portfolio of medical X-ray imaging devices developed into a large range of dedicated instrumentation for various applications. While X-ray imaging has come a long way, there are some physical properties of X-rays, which have not yet been fully exploited, and which may offer quite some room for further enhancements of current X-ray imaging equipment. Firstly, X-ray imaging today is mainly black and white, despite the fact that X-ray generators actually create a full spectrum of X-ray energies, and that the interactions of X-rays that occur within the human body are not the same for all energies and every material. Exploiting these spectral dependencies allows to not only obtain a black and white CT image, but also to obtain more molecularly specific information, which is relevant particularly in oncological precision radiology. The second aspect of X-rays, and so far in radiology mainly neglected and unused, is the physical fact that X-rays can also be interpreted in the wave picture, and not only as presently been done in the particle picture. If interpreted as waves, X-rays—just like visible light—experience a phase shift in matter, and this—if exploited correctly—can produce a new class of X-ray images, which then depict the wave interactions of X-rays with matter, rather than only the attenuating properties, as done until now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 89.00
Price excludes VAT (USA)
Softcover Book
USD 119.99
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CT:

Computed Tomography

DECT:

Dual-Energy CT

DFC:

Dark-field Contrast

DLCT:

Dual-Layer CT

DPC:

Differential Phase-Contrast

DSCT:

Dual-Source CT

IMD:

Iodine Material Density

KVSCT:

Rapid kVp Switching CT

MRI:

Magnetic Resonance Imaging

SPCCT:

Spectral Photon-Counting CT

VME:

Virtual Mono-Energetic

VNC:

Virtual Non-Contrast

References

  1. Agrawal MD et al (2014) Oncologic applications of dual-energy CT in the Abdomen. RadioGraphics 34:589–612

    Article  PubMed  Google Scholar 

  2. Almeida IP et al (2017) Dual-energy CT quantitative imaging: a comparison study between twin-beam and dual-source CT scanners. Med Phys 44:171–179

    Article  CAS  PubMed  Google Scholar 

  3. Altman A, Carmi R (2009) TU-E-210A-03: A double-layer detector, dual-energy CT—principles. Advan Appl Med Phys 36:2750–2750

    Google Scholar 

  4. Arboleda C et al (2017) Sensitivity-based optimization for the design of a grating interferometer for clinical X-ray phase contrast mammography. Opt Express 25:6349–6364

    Article  PubMed  Google Scholar 

  5. Bech M et al (2010) Quantitative x-ray dark-field computed tomography. Phys Med Biol 55:5529–5539

    Article  CAS  PubMed  Google Scholar 

  6. Bech M et al (2013) In-vivo dark-field and phase-contrast x-ray imaging. Scientif Reports 3:3209

    Article  CAS  Google Scholar 

  7. Cormode DP et al (2017) Multicolor spectral photon-counting computed tomography: in vivo dual contrast imaging with a high count rate scanner. Scientific Reports 7:4784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cotton PB et al (2004) Computed Tomographic Colonography (Virtual Colonoscopy): A Multicenter Comparison With Standard Colonoscopy for Detection of Colorectal Neoplasia. JAMA 291:1713–1719

    Article  CAS  PubMed  Google Scholar 

  9. Deniffel D et al (2018) Computed Tomography Perfusion Measurements in Renal Lesions Obtained by Bayesian Estimation, Advanced Singular-Value Decomposition Deconvolution, Maximum Slope, and Patlak Models: Intermodel Agreement and Diagnostic Accuracy of Tumor Classification. Invest Radiol 53:477–485

    Article  PubMed  Google Scholar 

  10. Deniffel D et al (2019) Differentiating intrapulmonary metastases from different primary tumors via quantitative dual-energy CT based iodine concentration and conventional CT attenuation. Eur J Radiol 111:6–13

    Article  PubMed  Google Scholar 

  11. Donath T et al (2010) Toward clinical X-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen. Invest Radiol 45:445–452

    Article  PubMed  Google Scholar 

  12. Flohr TG et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  13. Freedman MT, Lo S-CB, Seibel JC, Bromley CM (2011) Lung nodules: improved detection with software that suppresses the rib and clavicle on chest radiographs. Radiology 260:265–273

    Article  PubMed  Google Scholar 

  14. Gromann LB et al (2017) In-vivo X-ray Dark-Field Chest Radiography of a Pig. Scientific Reports 7:4807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Johnson TRC et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415

    Article  PubMed  Google Scholar 

  16. Karçaaltıncaba M, Aktaş A (2011) Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagn Interv Radiol 17:181–194

    PubMed  Google Scholar 

  17. Koehler T et al (2015) Slit-scanning differential x-ray phase-contrast mammography: Proof-of-concept experimental studies. Med Phys 42:1959–1965

    Article  PubMed  Google Scholar 

  18. Levin, B. et al. Screening and Surveillance for the Early Detection of Colorectal Cancer and Adenomatous Polyps, 2008: A Joint Guideline from the American Cancer Society, the US Multi‐Society Task Force on Colorectal Cancer, and the American College of Radiology*†. CA: A Cancer Journal for Clinicians 58, 130–160 (2008)

    Google Scholar 

  19. Modregger P et al (2012) Imaging the Ultrasmall-Angle X-Ray Scattering Distribution with Grating Interferometry. Phys Rev Lett 108:048101

    Article  CAS  PubMed  Google Scholar 

  20. Momose A et al (2003) Demonstration of X-Ray Talbot Interferometry. Jpn J Appl Phys 42:L866–L868

    Article  CAS  Google Scholar 

  21. Momose A (2005) Recent Advances in X-ray Phase Imaging. Jpn J Appl Phys 44:6355–6367

    Article  CAS  Google Scholar 

  22. Momose A, Kuwabara H, Harasse S, Yashiro W (2011) Four-dimensional X-ray phase tomography with Talbot interferometry and white synchrotron radiation: dynamic observation of a living worm. Opt Express 19:8423–8432

    Article  CAS  PubMed  Google Scholar 

  23. Momose A et al (2014) X-ray phase imaging: from synchrotron to hospital. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372:20130023–20130023

    Article  Google Scholar 

  24. Muenzel D et al (2017) Spectral Photon-counting CT: Initial Experience with Dual-Contrast Agent K-Edge Colonography. Radiology 283:723–728

    Article  PubMed  Google Scholar 

  25. Muenzel D et al (2017) Simultaneous dual-contrast multi-phase liver imaging using spectral photon-counting computed tomography: a proof-of-concept study. Eur Radiol Exp 1:25

    Article  PubMed  PubMed Central  Google Scholar 

  26. Olivo A et al (2013) Low-dose phase contrast mammography with conventional x-ray sources. Med Phys 40:090701

    Article  CAS  PubMed  Google Scholar 

  27. Pfeiffer D et al (2018) Iodine material density images in dual-energy CT: quantification of contrast uptake and washout in HCC. Abdom Radiol (NY) 43:3317–3323

    Article  Google Scholar 

  28. Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258–261

    Article  CAS  Google Scholar 

  29. Pfeiffer F, Kottler C, Bunk O, David C (2007) Hard X-Ray Phase Tomography with Low-Brilliance Sources. Phys Rev Lett 98:108105

    Article  CAS  PubMed  Google Scholar 

  30. Pfeiffer F et al (2008) Hard-X-ray dark-field imaging using a grating interferometer. Nat Mater 7:134–137

    Article  CAS  PubMed  Google Scholar 

  31. Qi Z, Zambelli J, Bevins N, Chen GH (2010) Quantitative imaging of electron density and effective atomic number using phase contrast CT. Phys Med Biol 55:2669–2677

    Article  PubMed  PubMed Central  Google Scholar 

  32. Riederer I et al (2019) Differentiation between blood and iodine in a bovine brain-Initial experience with Spectral Photon-Counting Computed Tomography (SPCCT). PLoS ONE 14:e0212679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scherer K et al (2017) X-ray Dark-field Radiography—In-Vivo Diagnosis of Lung Cancer in Mice. Scientific Reports 7:402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sellerer T et al (2018) Dual-energy CT: a phantom comparison of different platforms for abdominal imaging. Eur Radiol 28:2745–2755

    Article  PubMed  Google Scholar 

  35. Stampanoni M et al (2011) The First Analysis and Clinical Evaluation of Native Breast Tissue Using Differential Phase-Contrast Mammography. Invest Radiol 46:801–806

    Article  CAS  PubMed  Google Scholar 

  36. Stutman, D., Beck, T. J., Medicine, J. C. P. I.2011. Talbot phase-contrast x-ray imaging for the small joints of the hand. iopscience.iop.org

    Google Scholar 

  37. Symons R et al (2017) Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: An in vivo study. Med Phys 44:5120–5127

    Article  PubMed  Google Scholar 

  38. Tanaka J et al (2013) Cadaveric and in vivo human joint imaging based on differential phase contrast by X-ray Talbot-Lau interferometry. Zeitschrift fßr Medizinische Physik 23:222–227

    Article  Google Scholar 

  39. Tapfer A et al (2012) Experimental results from a preclinical X-ray phase-contrast CT scanner. Proc Natl Acad Sci USA 109:15691–15696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Velroyen A et al (2015) Grating-based X-ray Dark-field Computed Tomography of Living Mice. EBIOM 2:1500–1506

    Article  CAS  Google Scholar 

  41. Weitkamp T et al (2005) X-ray phase imaging with a grating interferometer. Opt Express 13:6296–6304

    Article  PubMed  Google Scholar 

  42. Wen H et al (2013) Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings. Nature Communications 4:2659

    Article  PubMed  CAS  Google Scholar 

  43. Willer K et al (2018) X-ray dark-field imaging of the human lung—A feasibility study on a deceased body. PLoS ONE 13:e0204565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zanette I et al (2012) Trimodal low-dose X-ray tomography. Proc Natl Acad Sci USA 109:10199–10204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu P et al (2010) Low-dose, simple, and fast grating-based X-ray phase-contrast imaging. Proc Natl Acad Sci USA 107:13576–13581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Pfeiffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfeiffer, D., Pfeiffer, F., Rummeny, E. (2020). Advanced X-ray Imaging Technology. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics