Skip to main content

Conventional and Unconventional T Cells

  • Chapter
Clinical and Basic Immunodermatology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pennington DJ, Vermijlen D, Wise EL, et al. The integration of conventional and unconventional T cells that characterizes cell-mediated responses. Adv Immunol 2005;87:27–59.

    Article  PubMed  CAS  Google Scholar 

  2. Kaufman SH. Gamma / delta and other unconventional T lymphocytes: what do they see and what do they do? Proc Natl Acad Sci USA 1996;93:2272–9.

    Article  Google Scholar 

  3. Girardi M. Cutaneous biology of T cells. In: Advances in Dermatology, vol. 20. New York: Mosby, 2004.

    Google Scholar 

  4. Kronenberg M, Engel I. On the road: progress in finding the unique pathway of invariant NKT cell differentiation. Curr Opin Immunol 2007;19:186–93.

    Article  PubMed  CAS  Google Scholar 

  5. Janeway CA, Travers P, Walport M, et al. In: Immunobiology 5. New York: Garland, 2001.

    Google Scholar 

  6. Weaver CT, Hatton RD, Mangan PR, et al. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 2007;25:821–52.

    Article  PubMed  CAS  Google Scholar 

  7. Modlin RL. Th1–Th2 paradigm: insights from leprosy. J Invest Dermatol 1994;102:828–32.

    Article  PubMed  CAS  Google Scholar 

  8. Biedermann T, Rocken M, Carballido JM. TH1 and TH2 lymphocyte development and regulation of TH cell-mediated immune responses of the skin. J Invest Dermatol Symp Proc 2004;9:5–14.

    Article  CAS  Google Scholar 

  9. Heath WR, Carbone FR. Dangerous liaisons. Nature 2003;425(6957):460–1.

    Article  PubMed  CAS  Google Scholar 

  10. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004;5:987–95.

    Article  PubMed  CAS  Google Scholar 

  11. Renn CN, Sanchez DJ, Ochoa MT, et al. TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. J Immunol 2006;177:298–305.

    PubMed  CAS  Google Scholar 

  12. Robert C, Kupper TS. Inflammatory skin diseases, T cells, and immune surveillance. N Engl J Med 1999;341:1817–28.

    Article  Google Scholar 

  13. Kupper TS. T cells, immunosurveillance, and cutaneous immunity. J Dermatol Sci 2000;24:S41–5.

    Article  PubMed  CAS  Google Scholar 

  14. Clark RA, Chong B, Mirchandani N, et al. The vast majority of CLA+T cells are resident in normal skin. J Immunol 2006;176:4431–9.

    PubMed  CAS  Google Scholar 

  15. Ackerman AL, Cresswell P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol 2004;5:678–684.

    Article  PubMed  CAS  Google Scholar 

  16. Beissert S, Schwarz A, Schwarz T. Regulatory T cells. J Invest Dermatol 2006;126:15–24.

    Article  PubMed  CAS  Google Scholar 

  17. Lu L-F, Lind EF, Gondek DC, et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 2006;442:997–1002.

    Article  PubMed  CAS  Google Scholar 

  18. Hayday A, Tigelaar R. Immunoregulation in the tissues by gammadelta T cells. Nat Rev Immunol 2003;3:233–42.

    Article  PubMed  CAS  Google Scholar 

  19. Asarnow DM, Goodman T, LeFrancois L, et al. Distinct antigen receptor repertoires of two classes of murine epithelium-associated T cells. Nature 1989;341:60–2.

    Article  PubMed  CAS  Google Scholar 

  20. Allison JP, Havran WL. The immunobiology of T cells with invariant gamma delta antigen receptors. Annu Rev Immunol 1991;9:679–705.

    PubMed  CAS  Google Scholar 

  21. Goodman T, Lefrancois L. Expression of the gamma-delta T-cell receptor on intestinal CD8+ intraepithelial lymphocytes. Nature 1988;333:855–8.

    Article  PubMed  CAS  Google Scholar 

  22. Itohara S, Farr AG, Lafaille JJ, et al. Homing of a gamma delta thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 1990;343:754–7.

    Article  PubMed  CAS  Google Scholar 

  23. Bergstresser PR, Sullivan S, Streilein JW, et al. Origin and function of Thy-1+ dendritic epidermal cells in mice. J Invest Dermatol 1985;85:85s–90s.

    Article  PubMed  CAS  Google Scholar 

  24. Kyes S, Pao W, Hayday A. Influence of site of expression on the fetal gamma delta T-cell receptor repertoire. Proc Natl Acad Sci U S A 1991;88:7830–3.

    Article  PubMed  CAS  Google Scholar 

  25. Bonneville M, Itohara S, Krecko EG, et al. Transgenic mice demonstrate that epithelial homing of gamma/ delta T cells is determined by cell lineages independent of T cell receptor specificity. J Exp Med 1990;171:1015–26.

    Article  PubMed  CAS  Google Scholar 

  26. Chien YH, Jores R, Crowley MP. Recognition by gamma/delta T cells. Annu Rev Immunol 1996;14:511–32.

    Article  PubMed  CAS  Google Scholar 

  27. Janeway CA Jr, Jones B, Hayday A. Specificity and function of T cells bearing gamma delta receptors. Immunol Today 1988;9:73–6.

    Article  PubMed  Google Scholar 

  28. Iwashima M, Green A, Bonyhadi M, et al. Expression of a fetal gamma delta T-cell receptor in adult mice triggers a non-MHC-linked form of selective depletion. Int Immunol 1991;3:385–93.

    Article  PubMed  CAS  Google Scholar 

  29. Steele CR, Oppenheim DE, Hayday AC. Gamma(delta) T cells: non-classical ligands for non-classical cells. Curr Biol 2000;10:R282–5.

    Article  PubMed  CAS  Google Scholar 

  30. Wu J, Groh V, Spies T. T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial gamma delta T cells. J Immunol 2002;169:1236–40.

    PubMed  CAS  Google Scholar 

  31. Pennington DJ, Silva-Santos B, Shires J, et al. The inter-relatedness and interdependence of mouse T cell receptor gammadelta+ and alphabeta+ cells. Nat Immunol 2003;4:991–8.

    Article  PubMed  CAS  Google Scholar 

  32. King DP, Hyde DM, Jackson KA, et al. Cutting edge: protective response to pulmonary injury requires gamma delta T lymphocytes. J Immunol 1999;162:5033–6.

    PubMed  CAS  Google Scholar 

  33. Waters WR, Harp JA. Cryptosporidium parvum infection in T-cell receptor (TCR)-alpha- and TCR-delta-deficient mice. Infect Immun 1996;64:1854–7.

    PubMed  CAS  Google Scholar 

  34. Ramsburg E, Tigelaar R, Craft J, et al. Age-dependent requirement for gammadelta T cells in the primary but not secondary protective immune response against an intestinal parasite. J Exp Med 2003;198:1403–14.

    Article  PubMed  CAS  Google Scholar 

  35. Fisch P, Meuer E, Pende D, et al. Control of B cell lymphoma recognition via natural killer inhibitory receptors implies a role for human Vgamma9/ Vdelta2 T cells in tumor immunity. Eur J Immunol 1997;27:3368–79.

    Article  PubMed  CAS  Google Scholar 

  36. Holtmeier W, Pfander M, Hennemann A, et al. The TCR delta repertoire in normal human skin is restricted and distinct from the TCR-delta repertoire in the peripheral blood. J Invest Dermatol 2001;116:275–80.

    Article  PubMed  CAS  Google Scholar 

  37. Chen ZW, Letvin NL. Vgamma2Vdelta2+ T cells and anti-microbial immune responses. Microbes Infect 2003;5:491–8.

    Article  PubMed  Google Scholar 

  38. Bonneville M, Fournie JJ. Sensing cell stress and transformation through Vgamma9Vdelta2 T cell-mediated recognition of the isoprenoid pathway metabolites. Microbes Infect 2005;7:503–9.

    Article  PubMed  CAS  Google Scholar 

  39. Scotet E, Martinez LO, Grant E, et al. Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 2005;22:71–80.

    Article  PubMed  CAS  Google Scholar 

  40. Wilhelm M, Kunzmann V, Eckstein S, et al. Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood 2003;102:200–6.

    Article  PubMed  CAS  Google Scholar 

  41. Lozupone F, Pende D, Burgio VL, et al. Effect of human natural killer and gammadelta T cells on the growth of human autologous melanoma xenografts in SCID mice. Cancer Res 2004;64:378–85.

    Article  PubMed  CAS  Google Scholar 

  42. Liu Z, Guo BL, Gehrs BC, et al. Ex vivo expanded human Vgamma9Vdelta2+ gammadelta-T cells mediate innate antitumor activity against human prostate cancer cells in vitro. J Urol 2005;173:1552–6.

    Article  PubMed  CAS  Google Scholar 

  43. Wang L, Kamath A, Das H, et al. Antibacterial effect of human V gamma 2V delta 2 T cells in vivo. J Clin Invest 2001;108:1349–57.

    PubMed  CAS  Google Scholar 

  44. Smith AL, Hayday AC. An alphabeta T-cell-inde-pendent immunoprotective response towards gut coc-cidia is supported by gammadelta cells. Immunology 2000;101:325–32.

    Article  PubMed  CAS  Google Scholar 

  45. Brandes M, Willimann K, Moser B. Professional antigen-presentation function by human γδT cells. Science 2005;309:264–8.

    Article  PubMed  CAS  Google Scholar 

  46. Kaminski MJ, Cruz PD Jr, Bergstresser PR, et al. Killing of skin-derived tumor cells by mouse dendritic epidermal T-cells. Cancer Res 1993;53:4014–9.

    PubMed  CAS  Google Scholar 

  47. Havran WL, Poenie M, Tigelaar RE, et al. Phenotypic and functional analysis of gamma delta T cell receptor-positive murine dendritic epidermal clones. J Immunol 1989;142:1422–8.

    PubMed  CAS  Google Scholar 

  48. Guy-Grand D, Malassis-Seris M, Briottet C, et al. Cytotoxic differentiation of mouse gut thymode-pendent and independent intraepithelial T lymphocytes is induced locally. Correlation between functional assays, presence of perforin and granzyme transcripts, and cytoplasmic granules. J Exp Med 1991;173:1549–52.

    Article  PubMed  CAS  Google Scholar 

  49. Mohamadzadeh M, McGuire MJ, Smith DJ, et al. Functional roles for granzymes in murine epidermal gamma(delta) T-cell-mediated killing of tumor targets. J Invest Dermatol 1996;107:738–42.

    Article  PubMed  CAS  Google Scholar 

  50. Krahenbuhl O, Gattesco S, Tschopp J. Murine Thy-1+ dendritic epidermal T cell lines express granule-associated perforin and a family of granzyme molecules. Immunobiology 1992;184:392–401.

    PubMed  CAS  Google Scholar 

  51. Shires J, Theodoridis E, Hayday AC. Biological insights into TCRgamma delta+ and TCRalpha beta+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 2001;15:419–34.

    Article  PubMed  CAS  Google Scholar 

  52. Huber H, Descossy P, Regier E, et al. Activation of phenotypically heterogeneous murine T cell receptor gamma delta + dendritic epidermal T cells by self-antigen(s). Int Arch Allergy Immunol 1995;107: 498–507.

    Article  PubMed  CAS  Google Scholar 

  53. Matsue H, Cruz PD Jr, Bergstresser PR, et al. Profiles of cytokine mRNA expressed by dendritic epidermal T cells in mice. J Invest Dermatol 1993;101(4):537–42.

    Article  PubMed  CAS  Google Scholar 

  54. Boismenu R, Havran WL. Modulation of epithelial cell growth by intraepithelial gamma delta T cells. Science 1994;266:1253–5.

    Article  PubMed  CAS  Google Scholar 

  55. Boismenu R, Feng L, Xia YY, et al. Chemokine expression by intraepithelial gamma delta T cells. Implications for the recruitment of inflammatory cells to damaged epithelia. J Immunol 1996;157(3):985–92.

    PubMed  CAS  Google Scholar 

  56. Fahrer AM, Konigshofer Y, Kerr EM, et al. Attributes of gammadelta intraepithelial lymphocytes as suggested by their transcriptional profile. Proc Natl Acad Sci USA 2001;98:10261–6.

    Article  PubMed  CAS  Google Scholar 

  57. Roberts SJ, Smith AL, West AB, et al. T-cell alpha beta + and gamma delta + deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc Natl Acad Sci USA 1996;93:11774–9.

    Article  PubMed  CAS  Google Scholar 

  58. Mukasa A, Hiromatsu K, Matsuzaki G, et al. Bacterial infection of the testis leading to autoaggressive immunity triggers apparently opposed responses of alpha beta and gamma delta T cells. J Immunol 1995;155:2047–56.

    PubMed  CAS  Google Scholar 

  59. Peng SL, Madaio MP, Hayday AC, et al. Propagation and regulation of systemic autoimmunity by gam-madelta T cells. J Immunol 1996;157:5689–98.

    PubMed  CAS  Google Scholar 

  60. Shiohara T, Moriya N, Hayakawa J, et al. Resistance to cutaneous graft-vs.-host disease is not induced in T cell receptor delta gene-mutant mice. J Exp Med 1996;183:1483–9.

    Article  PubMed  CAS  Google Scholar 

  61. Girardi M, Lewis J, Glusac E, et al. Resident skin-specific gammadelta T cells provide local, nonre-dundant regulation of cutaneous inflammation. J Exp Med 2002;195:855–67.

    Article  PubMed  CAS  Google Scholar 

  62. Van Damme N, De Keyser F, Demetter P, et al. The proportion of Th1 cells, which prevail in gut mucosa, is decreased in inflammatory bowel syndrome. Clin Exp Immunol 2001;125:383–90.

    Article  PubMed  Google Scholar 

  63. Beltrani VS. The clinical spectrum of atopic dermatitis. J Allergy Clin Immunol 1999;104:S87–98.

    Article  PubMed  CAS  Google Scholar 

  64. Huber SA, Graveline D, Newell MK, et al. gamma 1+ T cells suppress and V gamma 4+ T cells promote susceptibility to coxsackievirus B3-induced myocarditis in mice. J Immunol 2000;165:4174–81.

    PubMed  CAS  Google Scholar 

  65. Penninger JM, Wen T, Timms E, et al. Spontaneous resistance to acute T-cell leukaemias in TCRV gamma 1.1J gamma 4C gamma 4 transgenic mice. Nature 1995;375:241–4.

    Article  PubMed  CAS  Google Scholar 

  66. Peng SL, Robert ME, Hayday AC, et al. A tumor-suppressor function for Fas (CD95) revealed in T cell-deficient mice. J Exp Med 1996;184(3):1149–54.

    Article  PubMed  CAS  Google Scholar 

  67. Wilhelm M, Kunzmann V, Eckstein S, et al. Gamma delta T cells for immune therapy of patients with lymphoid malignancies. Blood 2003;102:200–6.

    Article  PubMed  CAS  Google Scholar 

  68. Girardi M, Oppenheim DE, Steele CR, et al. Regulation of cutaneous malignancy by gammadelta T cells. Science 2001;294:605–9.

    Article  PubMed  CAS  Google Scholar 

  69. Gao Y, Yang W, Pan M, et al. Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med 2003;198:433–42.

    Article  PubMed  CAS  Google Scholar 

  70. Matsuda S, Kudoh S, Katayama S. Enhanced formation of azoxymethane-induced colorectal adenocar-cinoma in gammadelta T lymphocyte-deficient mice. Jpn J Cancer Res 2001;92(8):880–5.

    PubMed  CAS  Google Scholar 

  71. Havran WL, Chien YH, Allison JP. Recognition of self antigens by skin-derived T cells with invariant gamma delta antigen receptors. Science 1991;252:1430–2.

    Article  PubMed  CAS  Google Scholar 

  72. Owens DM, Wei S, Smart RC. A multihit, multistage model of chemical carcinogenesis. Carcinogenesis 1999;20:1837–44.

    Article  PubMed  CAS  Google Scholar 

  73. Girardi M, Glusac E, Filler RB, et al. The distinct contributions of murine T cell receptor (TCR)gamma delta+ and TCRalpha beta+ T cells to different stages of chemically induced skin cancer. J Exp Med 2003;198:747–55.

    Article  PubMed  CAS  Google Scholar 

  74. Siegel CT, Schreiber K, Meredith SC, et al. Enhanced growth of primary tumors in cancer-prone mice after immunization against the mutant region of an inherited oncoprotein. J Exp Med 2000;191:1945–56.

    Article  PubMed  CAS  Google Scholar 

  75. Daniel D, Meyer-Morse N, Bergsland EK, et al. Immune enhancement of skin carcinogenesis by CD4+ T cells. J Exp Med 2003;197:1017–28.

    Article  PubMed  CAS  Google Scholar 

  76. Roberts SJ, Ng B Y, Filler RB, et al. Characterizing tumor-promoting T cells in chemically induced cutaneous carcinogenesis. Proc Natl Acad Sci USA 2007;104:6770–5.

    Article  PubMed  CAS  Google Scholar 

  77. Egan PJ, Carding SR. Downmodulation of the inflammatory response to bacterial infection by gam-madelta T cells cytotoxic for activated macrophages. J Exp Med 2000;191:2145–58.

    Article  PubMed  CAS  Google Scholar 

  78. Skeen MJ, Freeman MM, Ziegler HK. Changes in peritoneal myeloid populations and their proinflam-matory cytokine expression during infection with Listeria monocytogenes are altered in the absence of gamma/delta T cells. J Leukoc Biol 2004;76:104–15.

    Article  PubMed  CAS  Google Scholar 

  79. Huber SA, Graveline D, Born WK, et al. Cytokine production by Vgamma(+)-T-cell subsets is an important factor determining CD4(+)-Th-cell phenotype and susceptibility of BALB/c mice to coxsackievirus B3-induced myocarditis. J Virol 2001;75:5860–9.

    Article  PubMed  CAS  Google Scholar 

  80. Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-induc-ible MICA. Science 1999;285:727–9.

    Article  PubMed  CAS  Google Scholar 

  81. Cerwenka A, Bakker AB, McClanahan T, et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 2000;12:721–7.

    Article  PubMed  CAS  Google Scholar 

  82. Groh V, Rhinehart R, Secrist H, et al. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 1999;96:6879–84.

    Article  PubMed  CAS  Google Scholar 

  83. Vetter CS, Groh V, Thor Straten P, et al. Expression of stress-induced MHC class I related chain molecules on human melanoma. J Invest Dermatol 2002;118:600–5.

    Article  PubMed  CAS  Google Scholar 

  84. Hansen DS, Schofield L. Regulation of immunity and pathogenesis in infectious diseases by CD1d-restricted NKT cells. Int J Parasitology 2004;34:15–25.

    Article  CAS  Google Scholar 

  85. Kronenberg M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 2005;23:877–900.

    Article  PubMed  CAS  Google Scholar 

  86. Godfrey DI, McConville MJ, Pelicci DG. Chewing the fat on natural killer T cell development. J Exp Med 2006;203:2229–32.

    Article  PubMed  CAS  Google Scholar 

  87. Godfrey DI, Hammond KJ, Poulton LD, et al. NKT cells: facts, functions and fallacies. Immunol Today 2000;21:573–83.

    Article  PubMed  CAS  Google Scholar 

  88. Gumperz JE, Miyake S, Yamamura T, et al. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 2002;195:625–36.

    Article  PubMed  CAS  Google Scholar 

  89. Takahashi T, Chiba S, Nieda M, et al. Cutting edge: analysis of human V Alpha 24+NK T cells activated by alpha-galactosylceramide-pulsed monocyte-derived dendritic cells. J Immunol 2002;168:3140–4.

    PubMed  CAS  Google Scholar 

  90. Prussin C, Foster B. TCR V alpha 24 and V beta 11 coexpression defines a human NK1 T cell analog containing a unique Th0 subpopulation. J Immunol 1997;159:5862–70.

    PubMed  CAS  Google Scholar 

  91. Benlagha K, Weiss A, Beavis A, et al. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 2000;191:1895–903.

    Article  PubMed  CAS  Google Scholar 

  92. Norris S, Doherty DG, Collins C, et al. Natural T cells in the human liver: cytotoxic lymphocytes with dual T cell and natural killer cell phenotype and function are phenotypically heterogenous and include Valpha24-JalphaQ and gammadelta T cell receptor bearing cells. Hum Immunol 1999;60:20–31.

    Article  PubMed  CAS  Google Scholar 

  93. Gadola S, Silk JD, Jeans A, et al. Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases. J Exp Med 2006;203:2293–303.

    Article  PubMed  CAS  Google Scholar 

  94. Mattner J, Debord KL, Ismail N, et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 2005;434:525–9.

    Article  PubMed  CAS  Google Scholar 

  95. Brigl M, Bry L, Kent SC, Gumperz JE, et al. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 2003;4:1230–7.

    Article  PubMed  CAS  Google Scholar 

  96. Kinjo Y, Wu D, Kim G, et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 2005;434:520–5.

    Article  PubMed  CAS  Google Scholar 

  97. Van Kaer L, Joyce S. Innate immunity: NKT cells in the spotlight. Curr Biol 2005;15:R429–31.

    Article  PubMed  CAS  Google Scholar 

  98. Smyth MJ, Thia K Y, Street SE, et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 2000;191:661–8.

    Article  PubMed  CAS  Google Scholar 

  99. Bell E. Immunotherapy: Do natural born killers specialize? Nature Rev Cancer 2005;5:914.

    Article  CAS  Google Scholar 

  100. Crowe NY, Smyth MJ, Godfrey DI. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med 2002;196:119–27.

    Article  PubMed  CAS  Google Scholar 

  101. Smyth MJ, Crowe NY, Pellicci DG, et al. Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood 2002;99:1259–66.

    Article  PubMed  CAS  Google Scholar 

  102. Crowe NY, Coquet JM, Berzins SP, et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 2005;202:1279–88.

    Article  PubMed  CAS  Google Scholar 

  103. Askenase PW, Szczepanik M, Itakura A, et al. Extravascular T-cell recruitment requires initiation begun by Valpha14+ NKT cells and B-1 B cells. Trends Immunol 2004;25:441–9.

    Article  PubMed  CAS  Google Scholar 

  104. Campos RA, Szczepanik M, Lisbonne M, et al. Invariant NKT cells rapidly activated via immunization with diverse contact antigens collaborate in vitro with B-1 cells to initiate contact sensitivity. J Immunol 2006;177:3686–94.

    PubMed  CAS  Google Scholar 

  105. Linsen L, Somers V, Stinissen P. Immunoregulation of autoimmunity by natural killer T cells. Hum Immunol 2005;66:1193–202.

    Article  PubMed  CAS  Google Scholar 

  106. Wilson SB, Delovitch TL. Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat Rev Immunol 2003;3:211–22.

    Article  PubMed  CAS  Google Scholar 

  107. Wang B, Geng YB, Wang CR. CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J Exp Med 2001;194:313–20.

    Article  PubMed  Google Scholar 

  108. Shi FD, Flodstrom M, Balasa B, et al. Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc Natl Acad Sci USA 2001;98:6777–82.

    Article  PubMed  CAS  Google Scholar 

  109. Falcone M, Facciotti F, Ghidoli N, et al. Up-regulation of CD1d expression restores the immu-noregulatory function of NKT cells and prevents autoimmune diabetes in nonobese diabetic mice. J Immunol 2004;172:5908–16.

    PubMed  CAS  Google Scholar 

  110. Sharif S, Arreaza GA, Zucker P, et al. Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat Med 2001;7:1057–62.

    Article  PubMed  CAS  Google Scholar 

  111. Hong S, Wilson MT, Serizawa I, et al. The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 2001;7:1052–6.

    Article  PubMed  CAS  Google Scholar 

  112. Naumov YN, Bahjat KS, Gausling R, et al. Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci USA 2001;98:13838–43.

    Article  PubMed  CAS  Google Scholar 

  113. Beaudoin L, Laloux V, Novak J, et al. NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic beta cells. Immunity 2002;17:725–36.

    Article  PubMed  CAS  Google Scholar 

  114. Novak J, Beaudoin L, Griseri T, et al. Inhibition of T cell differentiation into effectors by NKT cells requires cell contacts. J Immunol 2005;174:1954–61.

    PubMed  CAS  Google Scholar 

  115. Yoshimoto T, Bendelac A, Hu-Li J, et al. Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+ T cells that promptly produce interleukin 4. Proc Natl Acad Sci USA 1995;92:11931–4.

    Article  PubMed  CAS  Google Scholar 

  116. Illes Z, Kondo T, Newcombe J, et al. Differential expression of NK T cell V alpha 24J alpha Q invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J Immunol 2000;164:4375–81.

    PubMed  CAS  Google Scholar 

  117. Demoulins T, Gachelin G, Bequet D, et al. A biased Valpha24+ T-cell repertoire leads to circulating NKT-cell defects in a multiple sclerosis patient at the onset of his disease. Immunol Lett 2003;90:223–8.

    Article  PubMed  CAS  Google Scholar 

  118. Singh AK, Wilson MT, Hong S, et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 2001;194:1801–11.

    Article  PubMed  CAS  Google Scholar 

  119. Pal E, Tabira T, Kawano T, et al. Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of V alpha 14 NK T cells. J Immunol 2001;166:662–8.

    PubMed  CAS  Google Scholar 

  120. Furlan R, Bergami A, Cantarella D, et al. Activation of invariant NKT cells by alphaGalCer administration protects mice from MOG35-55-induced EAE: critical roles for administration route and IFN-gamma. Eur J Immunol 2003;33:1830–8.

    Article  PubMed  CAS  Google Scholar 

  121. Singh AK, Wilson MT, Hong S, et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 2001;194:1801–11.

    Article  PubMed  CAS  Google Scholar 

  122. Jahng AW, Maricic I, Pedersen B, et al. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med 2001;194:1789–99.

    Article  PubMed  CAS  Google Scholar 

  123. Miyamoto K, Miyake S, Yamamura T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001;413:531–4.

    Article  PubMed  CAS  Google Scholar 

  124. Nikoloff BJ, Nestle FO. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J Clin Invest 2004;113:1664–75.

    Google Scholar 

  125. Holtmeier W, Pfander M, Hennemann A, et al. The TCR-delta repertoire in normal human skin is restricted and distinct from the TCR-delta repertoire in the peripheral blood. J Invest Dermatol 2001;116:275–80.

    Article  CAS  Google Scholar 

  126. Hayday A, Theodoridis E, Ramsburg E, et al. Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat Immunol 2001;2: 997–1003

    Article  PubMed  CAS  Google Scholar 

  127. Poussier P, Ning T, Banerjee D, et al. A unique subset of self-specific intraintestinal T cells maintains gut integrity. J Exp Med 2002;195: 1491–7.

    Article  PubMed  CAS  Google Scholar 

  128. Vermijlen D, Ellis P, Langford C, et al. Distinct cytokine-driven responses of activated blood gam-madelta T cells: insights into unconventional T cell peliotropy. J Immunol 2007;178:4304–14.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Roberts, S., Girardi, M. (2008). Conventional and Unconventional T Cells. In: Gaspari, A.A., Tyring, S.K. (eds) Clinical and Basic Immunodermatology. Springer, London. https://doi.org/10.1007/978-1-84800-165-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-165-7_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-164-0

  • Online ISBN: 978-1-84800-165-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics