Skip to main content

The Open Field Test

  • Protocol
  • First Online:
Mood and Anxiety Related Phenotypes in Mice

Part of the book series: Neuromethods ((NM,volume 42))

Abstract

The open field test (OFT) is a common measure of exploratory behavior and general activity in both mice and rats, where both the quality and quantity of the activity can be measured. Principally, the open field (OF) is an enclosure, generally square, rectangular, or circular in shape with surrounding walls that prevent escape. The most basic and common outcome of interest is “movement”; however, this can be influenced by motor output, exploratory drive, freezing or other fear-related behavior, sickness, relative time in circadian cycle, among many other variables. Distance moved, time spent moving, rearing, and change in activity over time are among many measures that can be tabulated and reported. Some outcomes, particularly defecation, center time, and activity within the first 5 minutes, likely gauge some aspects of emotionality including anxiety. The OFT is also commonly used as a mechanism to assess the sedative, toxic, or stimulant effects of compounds. Thus, the OFT measures a number of facets of behavior beyond simple locomotion. As such, the test has a number of uses and is included in almost every thorough analysis of rodent behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 169.99
Price excludes VAT (USA)
Hardcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hall C, Ballachey EL. A study of the rat's behavior in a field: a contribution to method in comparative psychology. University of California Publications in Psychology 1932;6:1–12.

    Google Scholar 

  2. Hall C. Drive and emotionality: factors associated with adjustment in the rat. J Comp Psychol 1934;27:89–108.

    Article  Google Scholar 

  3. Stanford SC. The Open Field Test: reinventing the wheel. J Psychopharmacol 2007;21(2):134–5.

    Article  PubMed  Google Scholar 

  4. Rodgers RJ. More haste, considerably less speed. J Psychopharmacol 2007;21(2):141–3.

    Article  PubMed  CAS  Google Scholar 

  5. Blizard DA, Takahashi A, Galsworthy MJ, Martin B, Koide T. Test standardization in behavioural neuroscience: a response to Stanford. J Psychopharmacol 2007;2(2):136–9.

    Article  PubMed  Google Scholar 

  6. Kopp C, Misslin R, Vogel E, Rettori MC, Delegrange P, Guardiola-Lematre B. Effects of day-length variations on emotional responses toward unfamiliarity. Behav Proc 1997;41:151–7.

    Article  Google Scholar 

  7. Walsh RN, Cummins RA. The Open-Field Test: a critical review. Psychol bull 1976;83 (3):482–504.

    Article  PubMed  CAS  Google Scholar 

  8. Takahashi A, Kato K, Makino J, Shiroishi T, Koide T. Multivariate analysis of temporal descriptions of open-field behavior in wild-derived mouse strains. Behav Genet 2006;36(5):763–74.

    Article  PubMed  Google Scholar 

  9. Kafkafi N, Elmer GI. Texture of locomotor path: a replicable characterization of a complex behavioral phenotype. Genes brain behav 2005;4(7):431–43.

    Article  PubMed  CAS  Google Scholar 

  10. Kafkafi N, Elmer GI. Activity density in the open field: a measure for differentiating the effect of psychostimulants. Pharmacol Biochem Behav 2005;80(2):239–49.

    Article  PubMed  CAS  Google Scholar 

  11. Kafkafi N, Pagis M, Lipkind D, et al. Darting behavior: a quantitative movement pattern designed for discrimination and replicability in mouse locomotor behavior. Behav Brain Res 2003;142(1–2):193–205.

    Article  PubMed  Google Scholar 

  12. Lipkind D, Sakov A, Kafkafi N, Elmer GI, Benjamini Y, Golani I. New replicable anxiety-related measures of wall vs center behavior of mice in the open field. J Appl Physiol 2004;97(1):347–59.

    Article  PubMed  Google Scholar 

  13. Royce JR. On the construct validity of open-field measures. Psychological bulletin 1977;84(6):1098–106.

    Article  Google Scholar 

  14. Broadhurst PL. Determinants of emotionality in the rat. I. situational factors. British J Psychol 1957;49:12–20.

    Article  Google Scholar 

  15. Mill J, Galsworthy MJ, Paya-Cano JL, et al. Home-cage activity in heterogeneous stock (HS) mice as a model of baseline activity. Genes brain behav 2002;1(3):166–73.

    Article  PubMed  CAS  Google Scholar 

  16. Belzung C. Measuring rodent exploratory behavior. In: Crusio WE, Gerlai RT, eds. Handbook of molecular-genetic techniques for brain and behavior research (techniques in the behavioral and neural sciences). Amsterdam: Elsevier, 1999;739–49.

    Google Scholar 

  17. Russell PA. Relationships between exploratory behaviour and fear: a review. Br J Psychol 1973;64(3):417–33.

    Article  PubMed  CAS  Google Scholar 

  18. Archer J. Tests for emotionality in rats and mice: a review. Animal behaviour 1973;21 (2):205–35.

    Article  PubMed  CAS  Google Scholar 

  19. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 2003;463(1–3):3–33.

    Article  PubMed  CAS  Google Scholar 

  20. Dulawa SC, Holick KA, Gundersen B, Hen R. Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 2004;29(7):1321–30.

    Article  PubMed  CAS  Google Scholar 

  21. Hall CS. Emotional behavior in the rat I. defacation and urination as measures of individual differences in emotionality. J Comp Psychol 1934;18:385–403.

    Article  Google Scholar 

  22. Whimbey AE, Denenberg VH. Two independent behavioral dimensions in open-field performance. J Comp Physiol Psychol 1967;63(3):500–4.

    Article  PubMed  CAS  Google Scholar 

  23. Flint J, Corley R, DeFries JC, et al. A simple genetic basis for a complex psychological trait in laboratory mice. Science (NY) 1995;269(5229):1432–5.

    Article  CAS  Google Scholar 

  24. DeFries JC, Wilson JR, McClearn GE. Open-field behavior in mice: selection response and situational generality. Behav Genet 1970;1(3):195–211.

    Article  PubMed  CAS  Google Scholar 

  25. Leppanen PK, Ravaja N, Ewalds-Kvist SB. Twenty-three generations of mice bidirectionally selected for open-field thigmotaxis: selection response and repeated exposure to the open field. Behav Processes 2006;72(1):23–31.

    Article  PubMed  Google Scholar 

  26. Carola V, D'Olimpio F, Brunamonti E, Mangia F, Renzi P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res 2002;134(1–2):49–57.

    Article  PubMed  Google Scholar 

  27. Dixon LK, Defries JC. Development of open-field behavior in mice: Effects of age and experience. Dev Psychobiol 1968;1(2):100–7.

    Article  Google Scholar 

  28. Tang X, Xiao J, Liu X, Sanford LD. Strain differences in the influence of open field exposure on sleep in mice. Behav Brain Res 2004;154(1):137–47.

    Article  PubMed  Google Scholar 

  29. Crabbe JC, Wahlsten D, Dudek BC. Genetics of mouse behavior: interactions with laboratory environment. Science 1999;284(5420):1670–2.

    Article  PubMed  CAS  Google Scholar 

  30. Bolivar VJ, Caldarone BJ, Reilly AA, Flaherty L. Habituation of activity in an open field: A survey of inbred strains and F1 hybrids. Behav Genet 2000;30(4):285–93.

    Article  PubMed  CAS  Google Scholar 

  31. Homanics GE, Quinlan JJ, Firestone LL. Pharmacologic and behavioral responses of inbred C57BL/6 J and strain 129/SvJ mouse lines. Pharmacol Biochem Behav 1999;63(1):21–6.

    Article  PubMed  CAS  Google Scholar 

  32. Voikar V, Polus A, Vasar E, Rauvala H. Long-term individual housing in C57BL/6 J and DBA/2 mice: assessment of behavioral consequences. Genes Brain Behav 2005;4(4):240–52.

    PubMed  CAS  Google Scholar 

  33. Voikar V, Koks S, Vasar E, Rauvala H. Strain and gender differences in the behavior of mouse lines commonly used in transgenic studies. Physiol Behav 2001;72(1–2):271–81.

    Article  PubMed  CAS  Google Scholar 

  34. Gariepy JL, Rodriguiz RM, Jones BC. Handling, genetic and housing effects on the mouse stress system, dopamine function, and behavior. Pharmacol Biochem Behav 2002;73(1):7–17.

    Article  PubMed  CAS  Google Scholar 

  35. Reboucas RC, Schmidek WR. Handling and isolation in three strains of rats affect open field, exploration, hoarding and predation. Physiol Behav 1997;62(5):1159–64.

    Article  PubMed  CAS  Google Scholar 

  36. Schmitt U, Hiemke C. Strain differences in open-field and elevated plus-maze behavior of rats without and with pretest handling. Pharmacol Biochem Behav 1998;59(4):807–11.

    Article  PubMed  CAS  Google Scholar 

  37. Valle FP. Effects of strain, sex, and illumination on open-field behavior of rats. Am J Psychol 1970;83(1):103–11.

    Article  PubMed  CAS  Google Scholar 

  38. Crawley JN, Belknap JK, Collins A, et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology 1997;132(2):107–24.

    Article  PubMed  CAS  Google Scholar 

  39. Beatrice S, Kvist M, Selander RK. Open-field thigmotaxis during various phases of the reproductive cycle. Scand J Psychol 1994;35(3):220–9.

    Article  PubMed  CAS  Google Scholar 

  40. Bronstein PM. Repeated trials with the albino rat in the open field as a function of age and deprivation. J Comp Physiol Psychol 1972;81(1):84–93.

    Article  PubMed  CAS  Google Scholar 

  41. Todorovic C, Dimitrijevic M, Stanojevic S, et al. Correlation between age-related changes in open field behavior and plaque forming cell response in DA female rats. Int J Neurosci 2003;113(9):1259–73.

    Article  PubMed  Google Scholar 

  42. Goodrick CL. Free exploration and adaptation within an open field as a function of trials and between-trial-interval for mature-young, mature-old, and senescent Wistar rats. J Gerontol 1971;26(1):58–62.

    PubMed  CAS  Google Scholar 

  43. Masur J, Schutz MT, Boerngen R. Gender differences in open-field behavior as a function of age. Dev Psychobiol 1980;13 (2):107–10.

    Article  PubMed  CAS  Google Scholar 

  44. Bronstein PM. Open-field behavior of the rat as a function of age: Cross-sectional and longitudinal investigations. Journal of Comparative and Physiological Psychology 1972;80(2):335–41.

    Article  Google Scholar 

  45. Seliger DL. Effects of age, sex, and brightness of field on open-field behaviors of rats. Percept Mot Skills 1977;45(3 Pt 2):1059–67.

    Article  PubMed  CAS  Google Scholar 

  46. Livesey PJ, Egger GJ. Age as a factor in open-field responsiveness in the white rat. J Comp Physiol Psychol 1970;73(1):93–9.

    Article  PubMed  CAS  Google Scholar 

  47. Doty BA, Doty LA. Effects of handling at various ages on later open-field behaviour. Can J Psychol 1967;21(6):463–70.

    Article  PubMed  CAS  Google Scholar 

  48. Nowak G, Mogilnicka E, Klimek V. Age-dependent day/night variations of alpha 1- and beta-adrenoceptors in the rat cerebral cortex. Physiol Behav 1986;38(1):53–5.

    Article  PubMed  CAS  Google Scholar 

  49. Palanza P, Gioiosa L, Parmigiani S. Social stress in mice: gender differences and effects of estrous cycle and social dominance. Physiol Behav 2001;73(3):411–20.

    Article  PubMed  CAS  Google Scholar 

  50. Blizard DA. Situational determinants of open-field behaviour in mus musculus. British Journal Psychology 1971;62(2):245–52.

    Article  Google Scholar 

  51. Bronstein PM, Wolkoff FD, Levine WJ. Sex-related differences in rats open-field activity. Behav Biol 1975;13(1):133–8.

    Article  PubMed  CAS  Google Scholar 

  52. Elliott BM, Grunberg NE. Effects of social and physical enrichment on open field activity differ in male and female Sprague-Dawley rats. Behav Brain Res 2005;165(2):187–96.

    Article  PubMed  Google Scholar 

  53. Romero RD, Chen WJ. Gender-related response in open-field activity following developmental nicotine exposure in rats. Pharmacol Biochem Behav 2004;78(4):675–81.

    Article  PubMed  CAS  Google Scholar 

  54. Izidio GS, Lopes DM, Spricigo L, Jr., Ramos A. Common variations in the pretest environment influence genotypic comparisons in models of anxiety. Genes Brain Behav 2005;4(7):412–9.

    Article  PubMed  CAS  Google Scholar 

  55. Alstott J, Timberlake W. Effects of rat sex differences and lighting on locomotor exploration of a circular open field with free-standing central corners and without peripheral walls. Behav Brain Res 2008.

    Google Scholar 

  56. Joffe JM, Levine S. Effects of weaning age and adult handling on avoidance conditioning, open-field behavior, and plasma corticosterone of adult rats. Behav Biol 1973;9 (2):235–44.

    Article  PubMed  CAS  Google Scholar 

  57. Genaro G, Schmidek WR. The influence of handling and isolation postweaning on open field, exploratory and maternal behavior of female rats. Physiol Behav 2002;75 (5):681–8.

    Article  PubMed  CAS  Google Scholar 

  58. Meerlo P, Horvath KM, Nagy GM, Bohus B, Koolhaas JM. The influence of postnatal handling on adult neuroendocrine and behavioural stress reactivity. J Neuroendocrinol 1999;11(12):925–33.

    Article  PubMed  CAS  Google Scholar 

  59. Vallee M, Mayo W, Dellu F, Le Moal M, Simon H, Maccari S. Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 1997;17(7):2626–36.

    PubMed  CAS  Google Scholar 

  60. Brenes JC, Rodriguez O, Fornaguera J. Differential effect of environment enrichment and social isolation on depressive-like behavior, spontaneous activity and serotonin and norepinephrine concentration in prefrontal cortex and ventral striatum. Pharmacol Biochem Behav 2008;89(1):85–93.

    Article  PubMed  CAS  Google Scholar 

  61. Ferdman N, Murmu RP, Bock J, Braun K, Leshem M. Weaning age, social isolation, and gender, interact to determine adult explorative and social behavior, and dendritic and spine morphology in prefrontal cortex of rats. Behav Brain Res 2007;180(2):174–82.

    Article  PubMed  CAS  Google Scholar 

  62. Lewejohann L, Reinhard C, Schrewe A, et al. Environmental bias? Effects of housing conditions, laboratory environment and experimenter on behavioral tests. Genes Brain Behav 2006;5(1):64–72.

    Article  PubMed  CAS  Google Scholar 

  63. Henderson ND. Prior treatment effects on open field behaviour of mice–a genetic analysis. Anim Behav 1967;15(2):364–76.

    Article  PubMed  CAS  Google Scholar 

  64. McIlwain KL, Merriweather MY, Yuva-Paylor LA, Paylor R. The use of behavioral test batteries: effects of training history. Physiology & behavior 2001;73(5):705–17.

    Article  CAS  Google Scholar 

  65. Igarashi E, Takeshita S. Effects of illumination and handling upon rat open field activity. Physiol Behav 1995;57(4):699–703.

    Article  PubMed  CAS  Google Scholar 

  66. Russell PA, Williams DI. Effects of repeated testing on rats' locomotor activity in the open-field. Anim Behav 1973;21(1):109–11.

    Article  PubMed  CAS  Google Scholar 

  67. Krsiak M. Measurement of Pharmacological Depression of Exploratory Activity in Mice: A Contibution to the Problem of Time-Economy and Sensitivity. Psychopharmacologia 1971;21:118–30.

    Article  PubMed  CAS  Google Scholar 

  68. Eilam D. Open-field behavior withstands drastic changes in arena size. Behav Brain Res 2003;142(1–2):53–62.

    Article  PubMed  Google Scholar 

  69. Yaski O, Eilam D. How do global and local geometries shape exploratory behavior in rats? Behav Brain Res 2008;187(2):334–42.

    Article  PubMed  Google Scholar 

  70. Kalueff AV, Keisala T, Minasyan A, Kuuslahti M, Tuohimaa P. Temporal stability of novelty exploration in mice exposed to different open field tests. Behav Processes 2006;72(1):104–12.

    Article  PubMed  Google Scholar 

  71. Whitford FW, Jr., Zipf SG. Open-field activity in mice as a function of ceiling height: A genotype-environment interaction. Behav Genet 1975;5(3):275–80.

    Article  PubMed  Google Scholar 

  72. Dixon LK, Van Mayeda D. Effects of floor textures on open-field behavior in selected lines of mice. Behav Genet 1976;6(1):87–92.

    Article  PubMed  CAS  Google Scholar 

  73. Avni R, Zadicario P, Eilam D. Exploration in a dark open field: a shift from directional to positional progression and a proposed model of acquiring spatial information. Behav Brain Res 2006;171(2):313–23.

    Article  PubMed  Google Scholar 

  74. Beeler J, Prendergast B, Zhuang X. Low amplitude entrainment of mice and the impact of circadian phase on behavior tests. Physiology & Behavior 2006;87:870–80.

    Article  CAS  Google Scholar 

  75. Valentinuzzi VS, Buxton OM, Chang AM, et al. Locomotor response to an open field during C57BL/6 J active and inactive phases: differences dependent on conditions of illumination. Physiol Behav 2000;69(3):269–75.

    Article  PubMed  CAS  Google Scholar 

  76. Kitahama K, Valatx JL. Strain differences in amphetamine sensitivity in mice. I. A diallel analysis of open field activity. Psychopharmacology 1979;66(2):189–94.

    Article  PubMed  CAS  Google Scholar 

  77. Anisman H, Wahlsten D, Kokkinidis L. Effects of d-amphetamine and scopolamine on activity before and after shock in three mouse strains. Pharmacol Biochem Behav 1975;3(5):819–24.

    Article  PubMed  CAS  Google Scholar 

  78. Gould TD, O'Donnell KC, Picchini AM, Manji HK. Strain differences in lithium attenuation of d-amphetamine-induced hyperlocomotion: a mouse model for the genetics of clinical response to lithium. Neuropsychopharmacology 2007;32(6):1321–33.

    Article  PubMed  CAS  Google Scholar 

  79. DeFries JC. Pleiotropic effects of albinism on open field behaviour in mice. Nature 1969;221(5175):65–6.

    Article  PubMed  CAS  Google Scholar 

  80. DeFries JC, Hegmann JP, Weir MW. Open-field behavior in mice: evidence for a major gene effect mediated by the visual system. Science (NY) 1966;154(756):1577–9.

    Article  CAS  Google Scholar 

  81. Hughes CW. Observer influence on automated open field activity. Physiol Behav 1978;20(4):481–5.

    Article  PubMed  CAS  Google Scholar 

  82. Izumi J, Washizuka M, Hayashi-Kuwabara Y, et al. Evidence for a depressive-like state induced by repeated saline injections in Fischer 344 rats. Pharmacol Biochem Behav 1997;57(4):883–8.

    Article  PubMed  CAS  Google Scholar 

  83. Whitaker J, Moy SS, Saville BR, et al. The effect of cage size on reproductive performance and behavior of C57BL/6 mice. Lab Anim (NY) 2007;36(10):32–9.

    Article  Google Scholar 

  84. Jahkel M, Rilke O, Koch R, Oehler J. Open field locomotion and neurotransmission in mice evaluated by principal component factor analysis-effects of housing condition, individual activity disposition and psychotropic drugs. Prog Neuropsychopharmacol Biol Psychiatry 2000;24(1):61–84.

    Article  PubMed  CAS  Google Scholar 

  85. Brenes Saenz JC, Villagra OR, Fornaguera Trias J. Factor analysis of Forced Swimming test, Sucrose Preference test and Open Field test on enriched, social and isolated reared rats. Behav Brain Res 2006;169(1):57–65.

    Article  PubMed  Google Scholar 

  86. Bors DA, Forrin B. The effects of post-weaning environment, biological dam, and nursing dam on feeding neophobia, open field activity, and learning. Can J Exp Psychol 1996;50(2):197–204.

    Article  PubMed  CAS  Google Scholar 

  87. Eilam D. Locomotor activity in common spiny mice (Acomys cahirinuse): the effect of light and environmental complexity. BMC Ecol 2004;4(1):16.

    Article  PubMed  Google Scholar 

  88. Krsiak M, Steinberg H, Stolerman IP. Uses and limitations of photocell activity cages for assessing effects of drugs. Psychopharmacologia 1970;17(3):258–74.

    Article  PubMed  CAS  Google Scholar 

  89. Kvist SB, Selander RK. A qualitative aspect of learning-sensitive open field ambulation in mice. Scand J Psychol 1992;33(2):97–107.

    Article  PubMed  CAS  Google Scholar 

  90. Roth KA, Katz RJ. Stress, behavioral arousal, and open field activity–a reexamination of emotionality in the rat. Neurosci Biobehav Rev 1979;3(4):247–63.

    Article  PubMed  CAS  Google Scholar 

  91. Dishman RK, Dunn AL, Youngstedt SD, et al. Increased open field locomotion and decreased striatal GABAA binding after activity wheel running. Physiol Behav 1996;60(3):699–705.

    PubMed  CAS  Google Scholar 

  92. Whishaw IQ, Gharbawie OA, Clark BJ, Lehmann H. The exploratory of home bases in mice (C57BL/6) influenced behavior of rats in an open environment optimizes security. Behav Brain Res 2006;171(2):230–9.

    Article  PubMed  Google Scholar 

  93. Clark BJ, Hamilton DA, Whishaw IQ. Motor activity (exploration) and formation by visual and tactile cues: modification of movement distribution, distance, location, and speed. Physiol Behav 2006;87(4):805–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd D. Gould .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gould, T.D., Dao, D.T., Kovacsics, C.E. (2009). The Open Field Test. In: Gould, T. (eds) Mood and Anxiety Related Phenotypes in Mice. Neuromethods, vol 42. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-303-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-303-9_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-302-2

  • Online ISBN: 978-1-60761-303-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics