Skip to main content

Solar Parameters for Modeling the Interplanetary Background

  • Chapter
  • First Online:
Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere

Abstract

The goal of the working group on cross-calibration of past and present ultraviolet (UV) datasets of the International Space Science Institute (ISSI) in Bern, Switzerland was to establish a photometric cross-calibration of various UV and extreme ultraviolet (EUV) heliospheric observations. Realization of this goal required a credible and up-to-date model of the spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the latter part of the project: the solar factors responsible for shaping the distribution of neutral interstellar H in the heliosphere. In this paper we present the solar Lyman-α flux and the topics of solar Lyman-α resonant radiation pressure force acting on neutral H atoms in the heliosphere. We will also discuss solar EUV radiation and resulting photoionization of heliospheric hydrogen along with their evolution in time and the still hypothetical variation with heliolatitude. Furthermore, solar wind and its evolution with solar activity is presented, mostly in the context of charge exchange ionization of heliospheric neutral hydrogen, and dynamic pressure variations. Also electron-impact ionization of neutral heliospheric hydrogen and its variation with time, heliolatitude, and solar distance is discussed. After a review of the state of the art in all of those topics, we proceed to present an interim model of the solar wind and the other solar factors based on up-to-date in situ and remote sensing observations. This model was used by Izmodenov et al. (2013, this volume) to calculate the distribution of heliospheric hydrogen, which in turn was the basis for intercalibrating the heliospheric UV and EUV measurements discussed in Quémerais et al. (2013, this volume). Results of this joint effort will also be used to improve the model of the solar wind evolution, which will be an invaluable asset in interpretation of all heliospheric measurements, including, among others, the observations of Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A H atom traveling at 30 km s − 1 covers ∼ 0. 5 AU during one Carrington period.

  2. 2.

    One can expect another statistical effect: an increase in the local velocity spread in the population of neutral H gas in the heliosphere, but, to our knowledge, this effect has not been studied in the available literature.

  3. 3.

    Throughout the text, “monthly” is used as synonymous with “averaged over one Carrington rotation period”.

  4. 4.

    We adopt a convention where bold-italic characters mean vector quantities, while italics symbolize scalars.

  5. 5.

    The OMNI-2 dataset is described in the section “Evolution of Solar Wind in the Ecliptic Plane”.

  6. 6.

    Throughout this chapter, we refer to various quantities as “adjusted” meaning that we take their magnitudes scaled by \({r}^{2}\), i.e., multiplied by the square of solar distance expressed in AU.

  7. 7.

    Note that the electron distribution function can be approximated by the kappa function—originally by Maksimovic et al. (1997) and recently by Le Chat et al. (20102011)—which naturally covers both the core and halo components.

  8. 8.

    The Maximum Emissivity Region is by definition the region where the maximum of the source function for the Lyman-α backscatter glow is located.

  9. 9.

    For: Solar Wind ANisotropies.

References

  • P.O. Amblard, S. Moussaoui, T. Dudok de Wit, J. Aboudarham, M. Kretzschmar, J. Lilensten, F. Auchère, The euv sun as the superposition of elementary suns. Astron. Astrophys. 487, L13–L16 (2008). doi:10.1051/0004-6361:200809588

    Article  ADS  Google Scholar 

  • G. Artzner, J.C. Vial, P. Lemaire, P. Gouttebroze, J. Leibacher, Simultaneous time-resolved observations of the H L-alpha Mg K 2795 A, and Ca K solar lines. Astrophys. J. Lett. 224, L83–L85 (1978). doi:10.1086/182765

    Article  ADS  Google Scholar 

  • K. Asai, M. Kojima, M. Tokumaru, A. Yokobe, B.V. Jackson, P.L. Hick, P.K. Manoharan, Heliospheric tomography using interplanetary scintillation observations. iii - correlation between speed and electron density fluctuations in the solar wind. J. Geophys. Res. 103, 1991–2001 (1998). doi:10.1029/97JA02750

    Google Scholar 

  • J.R. Asbridge, S.J. Bame, W.C. Feldman, M.D. Montgomery, Helium and hydrogen velocity differences in the solar wind. J. Geophys. Res. 81, 2719–2727 (1976). doi:10.1029/JA08li016p02719

    Article  ADS  Google Scholar 

  • F. Auchère, Effect of the H I Ly α chromospheric flux anisotropy on the total intensity of the resonantly scattered coronal radiation. Astrophys. J. 622, 737–743 (2005). doi:10.1086/427903

    Article  ADS  Google Scholar 

  • F. Auchère, J.W. Cook, J.S. Newmark, D.R. McMullin, R. von Steiger, M. Witte, Model of the all-sky He II 30.4 nm solar flux. Adv. Space Res. 35, 388–392 (2005a). doi:10.1016/j.asr.2005.02.036

    Google Scholar 

  • F. Auchère, D.R. McMullin, J.W. Cook et al., A model for solar euv flux helium photoionization throughout the 3-dimensional heliosphere, in Proceedings of the Solar Wind 11 / SOHO 16 “Connecting the Sun and Heliosphere” Conference, Whistler, Canada, June 2005. S.P. ESA-592, ed. by B. Fleck, T.H. Zurbuchen, H. Lacoste (2005b), pp. 327–329

    Google Scholar 

  • S.J. Bame, E.W. Hones Jr., S.-L. Akasofu, M.D. Montgomery, J.R. Asbridge, Geomagnetic storm particles in the high-latitude magnetotail. J. Geophys. Res. 76, 7566–7583 (1971). doi: 10.1029/JA076i031p07566

    Article  ADS  Google Scholar 

  • S.J. Bame, J.R. Asbridge, H.E. Felthauser, J.P. Glore, H.L. Hawk, J. Chavez, ISEE-C solar wind plasma experiment. IEEE Trans. Geosci. Electron. 16, 160–162 (1978a)

    Article  ADS  Google Scholar 

  • S.J. Bame, J.R. Asbridge, H.E. Felthauser, J.P. Glore, G. Paschmann, P. Hemmerich, K. Lehmann, H. Rosenbauer, ISEE-1 and ISEE-2 fast plasma experiment and the ISEE-1 solar wind experiment. IEEE Trans. Geosci. Electron. 16, 216–220 (1978b)

    Article  ADS  Google Scholar 

  • S.J. Bame, D.J. McComas, B.L. Barraclough, J.L. Phillips, K.J. Sofaly, J.C. Chavez, B.E. Goldstein, R.K. Sakurai, The Ulysses solar wind plasma experiment. Astron. Astrophys. Supp. 92, 237–265 (1992)

    ADS  Google Scholar 

  • V.B. Baranov, Kinetic and hydrodynamic approaches in space plasma, in The Physics of the Heliospheric Boundaries, ed. by V.V. Ismodenov, R. Kallenbach, Vol. SR-005 of ISSI Science Report, pp. 1–26, ESA Publications Division, EXTEC ISBN 1608-280X (2006a)

    Google Scholar 

  • V.B. Baranov, Early concepts of the heliospheric interface: plasma, in The Physics of the Heliospheric Boundaries, ed. by V.V. Ismodenov, R. Kallenbach, vol. SR-005 of ISSI Science Report, pp. 27–44 (2006b)

    Google Scholar 

  • V.B. Baranov, Y.G. Malama, Model of the solar wind interaction with the local interstellar medium—numerical solution of self-consistent problem. J. Geophys. Res. 98, 15157–15163 (1993). doi:10.1029/93JA01171

    Article  ADS  Google Scholar 

  • V.B. Baranov, M.G. Lebedev, Y.G. Malama, The influence of the interface between the heliosphere and local interstellar medium on the penetration of H atoms to the solar system. Astrophys. J. 375, 347–351 (1991). doi:10.1086/170194

    Article  ADS  Google Scholar 

  • C.F. Barnett, H.T. Hunter, M.I. Kirkpatrick, I. Alvarez, C. Cisneros, R.A. Phaneuf, Atomic data for fusion, in Volume 1: Collisions of H, H 2 , He, and Li Atoms and Ions with Atoms and Moleucles. vol. ORNL-6086/V1 (Oak Ridge National Laboratories, Oak Ridge, Tennessee, 1990)

    Google Scholar 

  • J.-L. Bertaux, J.E. Blamont, Evidence for a source of an extraterrestrial hydrogen Lyman alpha emission. Astron. Astrophys. 11, 200–217 (1971)

    ADS  Google Scholar 

  • J.-L. Bertaux, E. Kyrölä, E. Quémerais, R. Pellinen, R. Lallement, W. Schmidt, M. Berthé, E. Dimarellis, J.P. Goutail, C. Taulemasse, C. Bernard, G. Leppelmeier, T. Summanen, H. Hannula, H. Huomo, V. Kehlä, S. Korpela, K. Leppälä, E. Strömmer, J. Torsti, K. Viherkanto, J.-F. Hochedez, G. Chretiennot, R. Peyroux, T. Holzer, SWAN: a study of solar wind anisotropies on SOHO with Lyman alpha sky mapping. Sol. Phys. 162, 403–439 (1995). doi:10.1007/BF00733435

    Article  ADS  Google Scholar 

  • J.-L. Bertaux, E. Quémerais, R. Lallement, Observations of a sky Lyman α groove related to enhanced solar wind mass flux in the neutral sheet. Geophys. Res. Lett. 23, 3675–3678 (1996). doi:10.1029/96GL03475

    Article  ADS  Google Scholar 

  • J.-L. Bertaux, E. Quémerais, R. Lallement, E. Kyrölä, W. Schmidt, T. Summanen, T. Mäkinen, The first 1.5 years of observation from SWAN Lyman-alpha solar wind mapper on SOHO, in Fifth SOHO Workshop: The Corona and Solar Wind near Minimum Activity, Oslo, Norway, June 1997, ed. by A. Wilson. S.P. ESA-404, p. 29 (1997)

    Google Scholar 

  • J.-L. Bertaux, E. Kyrölä, E. Quémerais, R. Lallement, W. Schmidt, J. Costa, T. Mäkinen, SWAN observations of the solar wind latitude distribution and its evolution since launch. Space Sci. Rev. 87, 129–132 (1999). doi:10.1023/A:1005178402842

    Article  ADS  Google Scholar 

  • J.-L. Bertaux, E. Quémerais, R. Lallement, E. Lamassoure, W. Schmidt, E. Kyrölä, Monitoring solar activity on the far side of the sun from sky reflected Lyman α radiation. Geophys. Res. Lett. 27, 1331–1334 (2000). doi:10.1029/1999GL003722

    Article  ADS  Google Scholar 

  • S. Błeszyński, S. Grzȩdzielski, D. Ruciński, J. Jakimiec, Expected fluxes of about 1 keV neutral H atoms in interplanetary space—comparison with the uv background and possibility of detection. Planet. Space Sci. 40, 1525–1533 (1992). doi:10.1016/0032-0633(92)90049-T

    Article  Google Scholar 

  • P. Bochsler, M. Bzowski, L. Didkovsky, H. Kucharek, J.M. Sokół, T.N. Woods, Ionization rates (preliminary), (2012) in preparation

    Google Scholar 

  • A. Bonetti, G. Moreno, S. Cantarano, A. Egidi, R. Marconero, F. Palutan, G. Pizella, Solar wind observations with satellite ESRO HEOS-1 in December 1969. Nuovo Cimento B Series 46, 307–323 (1969). doi:10.1007/BF02711013

    Article  ADS  Google Scholar 

  • R.M. Bonnet, P. Lemaire, J.C. Vial, G. Artzner, P. Gouttebroze, A. Jouchoux, A. Vidal-Madjar, J.W. Leibacher, A. Skumanich, The LPSP instrument on OSO 8. ii—in-flight performance and preliminary results. Astrophys. J. 221, 1032–1053 (1978). doi:10.1086/156109

    Google Scholar 

  • J.C. Brandt, R.G. Roosen, R.S. Harrington, Interplanetary gas. xvii. an astrometric determination of solar wind velocities from orientations of ionic comet tails. Astrophys. J. 177, 277–284 (1972). doi:10.1086/151706

    Google Scholar 

  • J.C. Brandt, R.S. Harrington, R.G. Roosen, Interplanetary gas. xx. does the radial solar wind speed increase with latitude. Astrophys. J. 196, 877–878 (1975). doi:10.1086/153478

    Google Scholar 

  • M. Brasken, E. Kyrölä, Resonance scattering of Lyman alpha from interstellar hydrogen. Astron. Astrophys. 332, 732–738 (1998)

    ADS  Google Scholar 

  • J.S. Bridge, A. Egidi, A.J. Lazarus, E. Lyon, L. Jacobson, Preliminary results of plasma measurements on IMP-A, in Space Research. V:969–978, ed. by D.G. King-Hele, P. Muller, G. Righini (North Holland, Amsterdam, 1965)

    Google Scholar 

  • M. Bzowksi, Time dependent radiation pressure and time dependent 2d ionisation rate for heliospheric modelling, in The Outer Heliosphere: The Next Frontiers, Cospar Colloquia Series, vol. 11, ed. by K. Scherer, H. Fichtner, H.-J. Fahr, E. Marsch (Pergamon Press, Amsterdam, 2001a), pp. 69–72

    Google Scholar 

  • M. Bzowski, A model of charge exchange of interstellar hydrogen on a time-dependent, 2d solar wind. Space Sci. Rev. 97, 379–383 (2001b). doi:10.1023/A:1011814125384

    Article  ADS  Google Scholar 

  • M. Bzowski, Response of the groove in heliospheric Lyman-α glow to latitude-dependent ionization rate. Astron. Astrophys. 408, 1155–1164 (2003). doi:10.1051/0004-6361:20031023

    Article  ADS  Google Scholar 

  • M. Bzowski, Survival probability and energy modification of hydrogen energetic neutral atoms on their way from the termination shock to earth orbit. Astron. Astrophys. 488, 1057–1068 (2008). doi:10.1051/0004-6361:200809393

    Article  ADS  Google Scholar 

  • M. Bzowski, D. Ruciński, Solar cycle modulation of the interstellar hydrogen density distribution in the heliosphere. Space Sci. Rev. 72, 467–470 (1995a). doi:10.1007/BF00768821

    Article  ADS  Google Scholar 

  • M. Bzowski, D. Ruciński, Variability of the neutral hydrogen density distribution due to solar cycle related effects. Adv. Space Res. 16, 131–134 (1995b). doi:10.1016/0273-1177(95)00325-9

    Article  ADS  Google Scholar 

  • M. Bzowski, D. Ruciński, Neutral solar wind evolution during solar cycle, in Solar Wind Eight, ed. by D. Winterhalter, J.T. Gosling, S.R. Habbal, W.S. Kurth, M. Neugebauer. AIP Conference Proceedings, vol. 382 (American Institute of Physics, Woodbury, New York, 1996), pp. 650–654. doi:10.1063/1.51452

    Google Scholar 

  • M. Bzowski, S. Tarnopolski, Neutral atom transport from the termination shock to 1 au, in Physics of the Inner Heliosheath, ed. by J. Heerikhuisen, V. Florinski, G.P. Zank, N.V. Pogorelov. AIP Conference Series, vol. 858, pp. 251–256 (2006). doi:10.1063/1.2359335

    Google Scholar 

  • M. Bzowski, H.-J. Fahr, D. Ruciński, H. Scherer, Variation of bulk velocity and temperature anisotropy of neutral heliospheric hydrogen during the solar cycle. Astron. Astrophys. 326, 396–411 (1997)

    ADS  Google Scholar 

  • M. Bzwoski, T. Summanen, D. Ruciński, E. Kyrölä, Response of interplanetary glow to global variations of hydrogen ionization rate and solar Lyman-α flux. J. Geophys. Res. 107, ssh2-1 (2002). doi:10.1029/2001JA000141

    Google Scholar 

  • M. Bzowski, T. Mäkinen, E. Kyrölä, T. Summanen, E. Quémerais, Latitudinal structure and north-south asymmetry of the solar wind from Lyman-α remote sensing by SWAN. Astron. Astrophys. 408, 1165–1177 (2003). doi:10.1051/0004-6361:20031022

    Article  ADS  Google Scholar 

  • M. Bzowski, E. Möbius, S. Tarnopolski, V. Izmodenov, G. Gloeckler, Density of neutral interstellar hydrogen at the termination shock from Ulysses pickup ion observations. Astron. Astrophys. 491, 7–19 (2008). doi:10.1051/0004-6361:20078810

    Article  ADS  Google Scholar 

  • M. Bzowski, E. Möbius, S. Tarnopolski, V. Izomdenov, G. Gloeckler, Neutral H density at the termination shock: a consolidation of recent results. Space Sci. Rev. 143, 177–190 (2009)

    Article  ADS  Google Scholar 

  • S. Chabrillat, G. Kockarts, Simple parameterization of the absorption of the solar Lyman-alpha line. Geophys. Res. Lett. 24, 2659–2662 (1997)

    Article  ADS  Google Scholar 

  • W.A. Coles, S. Maagoe, Solar-wind velocity from IPS observations. J. Geophys. Res. 77, 5622–5624 (1972). doi: 10.1029/JA077i028p05622

    Article  ADS  Google Scholar 

  • W.A. Coles, B.J. Rickett, IPS observations of the solar wind speed out of the ecliptic. J. Geophys. Res. 81, 4797–4799 (1976)

    Article  ADS  Google Scholar 

  • J.W. Cook, G.E. Brueckner, M.E. van Hoosier, Variability of the solar flux in the far ultraviolet 1175–2100 Å. J. Geophys. Res. 85, 2257–2268 (1980)

    Article  ADS  Google Scholar 

  • J.W. Cook, R.R. Meier, G.E. Brueckner, M.E. van Hoosier, Latitudinal anisotropy of the solar far ultraviolet flux—effect on the Lyman alpha sky background. Astron. Astrophys. 97, 394–397 (1981)

    ADS  Google Scholar 

  • A.E. Covington, Micro-wave solar noise observations during the partial eclipse of November 23, 1946. Nature 159, 405–406 (1947). doi:10.1038/159405a0

    Article  ADS  Google Scholar 

  • J.M.A. Danby, J.L. Camm, Statistical dynamics and accretion. Monthly Not. Royal Astron. Soc. 117, 150 (1957)

    MathSciNet  ADS  Google Scholar 

  • G. de Toma, Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Solar Phys. 274, 195–217 (2011). doi:10.1007/s11207-010-9677-2

    Article  ADS  Google Scholar 

  • P.A. Dennison, A. Hewish, The solar wind outside the plane of the ecliptic. Nature 213, 343–346 (1967). doi:10.1038/213343a0

    Article  ADS  Google Scholar 

  • T. Dudok de Wit, J. Lilensten, J. Aboudarham, P.-O. Amblard, M. Kretzschmar, Retrieving the solar euv spectrum from a reduced set of spectral lines. Ann. Geophys. 23, 3055 (2005)

    Article  ADS  Google Scholar 

  • T. Dudok de Wit, M. Kretzschmar, J. Aboudarham, P.-O. Amblard, F. Auchère, J. Lilensten, Which solar euv indices are best for reconstructing the solar euv irradiance? Adv. Space Res. 42, 903–911 (2008). doi:10.1016/j.asr.2007.04.019

    Article  ADS  Google Scholar 

  • T. Dudok de Wit, M. Kretzschmar, J. Lilensten, T. Woods, Finding the best proxies for the solar uv irradiance. Geophys. Res. Lett. 36, L10 (2009). doi:10.1029/2009/GL037825

    Article  Google Scholar 

  • R.W. Ebert, D.J. McComas, H.A. Elliott, R.J. Forsyth, J.T. Gosling, Bulk properites of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: three polar orbits of observations. J. Geophys. Res. 114, A1109 (2009). doi:10.1029/2008JA013631

    Article  ADS  Google Scholar 

  • C. Emerich, P. Lemaire, J.-C. Vial, W. Curdt, U. Schüle, K. Wilhelm, A new relation between the central spectral solar H I Lyman α irradiance and the line irradiance measured by sumer/SOHO during cycle 23. Icarus 178, 429–433 (2005)

    Article  ADS  Google Scholar 

  • H.-J. Fahr, Non-thermal solar wind heating by supra-thermal ions. Solar Phys. 30, 193–206 (1973)

    Article  ADS  Google Scholar 

  • H.-J. Fahr, Change of interstellar gas parameters in stellar wind dominated atmospheres: solar case. Astron. Astrophys. 66, 103–117 (1978)

    ADS  Google Scholar 

  • H.-J. Fahr, Interstellar hydrogen subject to a net repulsive solar force field. Astron. Astrophys. 77, 101–109 (1979)

    ADS  Google Scholar 

  • H.-J. Fahr, The 3d heliosphere: three decades of growing knowledge. Adv. Space Res. 32, 3–13 (2004)

    Article  ADS  Google Scholar 

  • H.-J. Fahr, D. Ruciński, Neutral interestellar gas atoms reducing the solar wind number and fractionally neutralizing the solar wind. Astron. Astrophys. 350, 1071–1078 (1999)

    ADS  Google Scholar 

  • H.-J. Fahr, D. Ruciński, Modification of properties and dynamics of distant solar wind due to its interaction with neutral interstellar gas. Space Sci. Rev. 97, 407–412 (2001). doi:10.1023/A:1011874311272

    Article  ADS  Google Scholar 

  • H.-J. Fahr, D. Ruciński, Heliospheric pick-up ions influencing thermodynamics and dynamics of the distant solar wind. Nonlinear Proc. Geophys. 9, 377–386 (2002)

    Article  ADS  Google Scholar 

  • H.-J. Fahr, K. Scherer Perturbations of the solar wind flow by radial and latitudinal pick-up ion pressure gradients. Ann. Geophys. 22, 2229–2238 (2004)

    Google Scholar 

  • H.-J. Fahr, H. Fichtner, K. Scherer, Theoretical aspects of energetic neutral atoms as messengers from distant plasma sites with emphasis on the heliosphere. Rev. Geophys. 45, RG4003 (2007). doi:10.1029/2006RG000214

    Article  ADS  Google Scholar 

  • W.C. Feldman, J.R. Asbridge, S.J. Bame, M.D. Montgomery, Double ion streams in the solar wind. J. Geophys. Res. 78, 2017–2027 (1973). doi:10.1029/JA078i013p02017

    Article  ADS  Google Scholar 

  • W.L. Fite, A.C.S. Smith, R.F. Stebbins, Charge transfer in collisions involving symmetric and asymmetric resonance. Proc. R. Soc. London Ser. A 268, 527 (1962)

    Article  ADS  Google Scholar 

  • L. Floyd, D.K. Prinz, P.C. Crane, L.C. Herring, Solar uv irradiance variation during cycles 22 and 23. Adv. Space Res. 29, 1957–1962 (2002)

    Article  ADS  Google Scholar 

  • L. Floyd, G. Rottman, M. Deland, J. Pap, 11 years of solar uv irradiance measurements from UARS, in Solar Variability as an Input to the Earth’s Environment, ed. by A. Wilson. ESA SP-535, pp. 195–203 (2003)

    Google Scholar 

  • L. Floyd, J. Newmark, J. Cook, L. Herring, D. McMullin, Solar euv and uv spectral irradiances and solar indices. J. Atmos. Sol. Terr. Phys. 67, 3–15 (2005). doi:10.1016/j.jastp.2004.07.013

    Article  ADS  Google Scholar 

  • P.C. Frisch, M. Bzowski, E. Grün, V. Izmodenov, H. Krüger, J.L. Linsky, D.J. McComas, E. Möbius, S. Redfield, N. Schwadron, R. Shelton, J.D. Slavin, B.E. Wood, The galactic environment of the sun: interstellar material inside and outside of the heliosphere. Space Sci. Rev. 146, 235–273 (2009). doi:10.1007/s11214-009-9502-0

    Article  ADS  Google Scholar 

  • P.C. Frisch, S. Redfield, J.D. Slavin, The interstellar medium surrounding the sun. Ann. Rev. Astron. Astrophys. 49, 237–279 (2011). doi:10.1146/annurev-astro-081710-102613

    Article  ADS  Google Scholar 

  • K. Fujiki, M. Kojima, M. Tokumaru, T. Ohmi, A. Yokobe, K. Hayashi, Solar cycle dependence of high-latitude solar wind, in Solar Wind Ten, ed. by M. Velli, R. Bruno, F. Malara, B. Bucci. American Institute of Physics Conference Series, vol. 679 (American Institute of Physics, Woodbury, New York, 2003a), pp. 141–143. doi:10.1063/1.1618561

    Google Scholar 

  • K. Fujiki, M. Kojima, M. Tokumaru, T. Ohmi, A. Yokobe, K. Hayashi, D.J. McComas, H.A. Elliott, Solar wind velocity structure around the solar maximum observed by interplanetary scintillation, in Solar Wind Ten, ed. by M. Velli, R. Bruno, F. Malara, B. Bucci. American Institute of Physics Conference Series, vol 679 (American Institute of Physics, Woodbury, New York, 2003b) pp. 226–229. doi:10.1063/1.1618583

    Google Scholar 

  • K. Fujiki, M. Kojima, M. Tokumaru, T. Ohmi, A. Yokobe, K. Hayashi, D.J. McComas, H.A. Elliott, How did the solar wind structure change around the solar maximum? from interplanetary scintillation observation. Ann. Geophys. 21, 1257–1261 (2003c). doi:10.5194/angeo-21-1257-2003

    Article  ADS  Google Scholar 

  • G. Gloeckler, J. Geiss, Heliospheric and interstellar phenomena deduced from pickup ion observations. Space Sci. Rev. 97, 169–181 (2001)

    Article  ADS  Google Scholar 

  • G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J.C. Cain, J. Fisher, L.A. Fisk, A.B. Galvin, F. Gliem, D.C. Hamilton, The solar wind ion composition spectrometer. Astron. Astrophys. Supp. 92, 267–289 (1992)

    ADS  Google Scholar 

  • G. Gloeckler, J. Geiss, H. Balsinger, L.A. Fisk, A.B. Galvin, F.M. Ipavich, K.W. Ogilvie, R. von Steiger, B. Wilken, Detection of interstellar pickup hydrogen in the solar system. Science 261, 70–73 (1993)

    Article  ADS  Google Scholar 

  • G. Gloeckler, E. Möbius, J. Geiss, M. Bzowksi, S. Chalov, H.-J. Fahr, D.R. McMullin, H. Noda, M. Oka, D. Ruciński, R. Skoug, T. Terasawa, R. von Steiger, A. Yamazaki, T. Zurbuchen, Observations of the helium focusing cone with pickup ions. Astron. Astrophys. 426, 845–854 (2004)

    Article  ADS  Google Scholar 

  • K. Gringauz, V. Bezrukih, V. Ozerov, R. Ribchinsky, A study of the interplanetary ionized gas, high-energy electrons and corpuscular radiation from the sun by means of hte three electrode trap for charged particles on the second soviet cosmic rocket. Sov. Phys. Doklady 5, 361 (1960)

    ADS  Google Scholar 

  • M.A. Gruntman, Neutral solar wind properties: advance warning of major geomagnetic storms. J. Geophys. Res. 99, 19213–19227 (1994)

    Article  ADS  Google Scholar 

  • J.K. Harmon, Scintillation studies of density microstructure in the solar wind plasma. Dissertation, University of California, San Diego, 1975

    Google Scholar 

  • K.L. Harvey, F. Recely, Polar coronal holes during cycles 22 and 23. Solar Phys. 211, 31–52 (2002)

    Article  ADS  Google Scholar 

  • K. Hayashi, M. Kojima, M. Tokumaru, K. Fujiki, MHD tomography using interplanetary scintillation measurement. J. Geophys. Res. 108, 1102 (2003). doi:10.1029/2002JA009567

    Article  Google Scholar 

  • D.F. Heath, B.M. Schlesinger, The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res. 91, 8672–8682 (1986). doi:10.1029/JD091iD08p08672

    Article  ADS  Google Scholar 

  • A. Hewish, M.D. Symonds, Radio investigation of the solar plasma. Planet. Space Sci. 17, 313 (1969). doi:10.1016/0032-0633(69)90064-6

    Article  ADS  Google Scholar 

  • A. Hewish, P.F. Scott, D. Wills, Interplanetary scintillation of small diameter radio sources. Nature 203, 1214–1217 (1964). doi:10.1038/2031214a0

    Article  ADS  Google Scholar 

  • H.E. Hinteregger, K. Fukui, B.R. Gilson, Observational, reference and model data on solar euv, from measurements on AE-E. Geophys. Res. Lett. 8, 1147–1150 (1981). doi:10.1029/GL008i011p01147

    Article  ADS  Google Scholar 

  • Z. Houminer, Radio source scintillation—evidence of plasma streams corotating about the sun. Nature 231, 165 (1971)

    ADS  Google Scholar 

  • D. Hovestadt, M. Hilchenbach, A. Bürgi, B. Klecker, P. Laeverenz, M. Scholer, H. Grünwaldt, W.I. Axford, S. Livi, E. Marsch, B. Wilken, H.P. Winterhoff, F.M. Ipavich, P. Bedini, M.A. Coplan, A.B. Galvin, G. Gloeckler, P. Bochsler, H. Balsiger, J. Fischer, J. Geiss, R. Kallenbach, P. Wurz, K.-U. Reiche, F. Gliem, D.L. Judge, H.S. Ogawa, K.C. Hsieh, E. Möbius, M.A. Lee, G.G. Managadze, M.I. Verigin, M. Neugebauer, CELIAS—charge, element and isotope analysis system for SOHO. Solar Phys. 162, 441–481 (1995). doi:10.1007/BF00733436

    Article  ADS  Google Scholar 

  • A.J. Hundhausen, J.R. Asbridge, S.J.B.H.E. Gilbert, I.B. Strong, Vela 3 satellite observations of solar wind ions. J. Geophys. Res. 72, 1979 (1967). doi:10.1029/JZ072i007p01979

    Google Scholar 

  • T. Isobe, E.D. Feigelson, M.G. Akritas, G.J. Babu, Linear regression in astronomy. Astrophys. J. 364, 104–113 (1990). doi:10.1086/169390

    Article  ADS  Google Scholar 

  • K. Issautier, Diagnostics of the solar wind plasma, in Turbulence in Space Plasmas, ed. by P. Cargill, L. Vlahos. Lecture Notes in Physics, vol. 778 (Springer, Berlin, 2009), pp. 223–246

    Google Scholar 

  • K. Issautier, N. Meyer-Vernet, M. Moncuquet, S. Hoang, Solar wind radial and latitudinal structure—electron density and core temperature from Ulysses thermal noise spectroscopy. J. Geophys. Res. 103, 1969–1979 (1998)

    Article  ADS  Google Scholar 

  • K. Issautier, R.M. Skoug, J.T. Gosling, S.P. Gary, D.J. McComas, Solar wind plasma parameters on Ulysses: detailed comparison between the urap and swoops experiments. J. Geophys. Res. 106, 15665–15676 (2001). doi:10.1029/2000JA000412

    Article  ADS  Google Scholar 

  • V.V. Izmodenov, V.B. Baranov, Modern multi-component models of the heliospheric interface, in The Physics of the Heliospheric Boundaries, ed. by V.V. Izmodenov, R. Kallenbach. ISSI Scientific Report Series, SR-005, pp. 67–136 (2006)

    Google Scholar 

  • V.V. Izmodenov, Y.G. Malama, A.P. Kalinin, M. Gruntman, R. Lallement, I.P. Rodionova, Hot neutral H in the heliosphere: elastic H-H, H-p collisions. Astrophys. Space Sci. 274, 71–76 (2000). doi:10.1023/A:1026531519864

    Article  ADS  Google Scholar 

  • V.V. Izmodenov, D.B. Alexashov, S.V. Chalov, O.A. Katushkina, Y.G. Malama, E.A. Provornikova, Kinetic-gasdynamic modeling of the heliospheric interface: global structure, interstellar atoms and heliospheric enas. Space Sci. Rev. 146, 329–351 (2009). doi:10.1007/s11214-009-9528-3

    Article  ADS  Google Scholar 

  • V.V. Izmodenov, O.A. Katushkina, E. Quémerais, M. Bzowski, Distribution of interstellar H atoms in the heliosphere and backscattered solar Lyman-α, in Cross-Calibration of Far uv Spectra of Solar System Objects and the Heliosphere, ed. by E. Quémerais, M. Snow, R.M. Bonnet. ISSI Scientific Report Series, SR-013 (2013) (this volume)

    Google Scholar 

  • B.V. Jackson, P.L. Hick, M. Kojima, A. Yokobe, Heliospheric tomography using interplanetary scintillation observations. Adv. Space Res. 20, 23–26 (1997). doi:10.1016/S0273-1177(97)00474-2

    Article  ADS  Google Scholar 

  • B.V. Jackson, P.L. Hick, M. Kojima, A. Yokobe, Heliospheric tomography using interplanetary scintillation observations. i. combined nagoya and cambridge data. J. Geophys. Res. 103, 12049–12067 (1998)

    Google Scholar 

  • D.L. Judge, D.R. McMullin, H.S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L.R. Canfield, R.E. Vest, R. Watts, C. Tarrio, M. Kuehne, P. Wurz, First solar euv irradiances obtained from SOHO by the CELIAS/SEM. Solar Phys. 177, 161–173 (1998)

    Article  ADS  Google Scholar 

  • J.C. Kasper, Solar wind plasma: kinetic properties and micro-instabilities. Dissertation, Massachusetts Institute of Technology, Cambridge, 2002

    Google Scholar 

  • J.C. Kasper, A.J. Lazarus, J.T. Steinberg, K.W. Ogilvie, A. Szabo, Physics-based tests to identify the accuracy of solar wind ion measurements: a case study with the wind faraday cups. J. Geophys. Res. 111, A03105 (2006). doi:10.1029/2005JA011442

    Article  ADS  Google Scholar 

  • J.C. Kasper, M.L. Stevens, K.E. Korreck, B.A. Maruca, K.K. Kiefer, N.A. Schwadron, S.T. Lepri, Evolution of the relationships between helium abundance, minor ion charge state, and solar wind speed over the solar cycle. Astrophys. J. 745, 162 (2012). doi:10.1088/0004-637X/745/2/162

    Article  ADS  Google Scholar 

  • O.A. Katushkina, V.V. Izmodenov, Effect of the heliospheric interface on the distribution of interstellar hydrogen atom inside the heliosphere. Astron. Lett. 36, 297–306 (2010). doi:10.1134/S1063773710040080

    Article  ADS  Google Scholar 

  • J.H. King, N.E. Papitashvili, Solar wind spatial scales in and comparisons of hourly wind and acd plasma and magnetic field data. J. Geophys. Res. 110, 2104–2111 (2005). doi:10.1029/2004JA010649

    Article  Google Scholar 

  • D. Kiselman, T. Pereira, B. Gustafsson, M. Asplund, J. Meléndez, K. Langhans, Is the solar spectrum latitude dependent? an investigation with SST/TRIPPEL. Astron. Astrophys. 535, A18 (2011)

    Article  Google Scholar 

  • M. Kojima, T. Kakinuma, Solar cycle evolution of solar wind speed structure between 1973 and 1985 observed with the interplanetary scintillation method. J. Geophys. Res. 92, 7269–7279 (1987). doi:10.1029/JA092iA07p07269

    Article  ADS  Google Scholar 

  • M. Kojima, T. Kakinuma, Solar cycle dependence of global distribution of solar wind speed. Space Sci. Rev. 53, 173–222 (1990). doi:10.1007/BF00212754

    Article  ADS  Google Scholar 

  • M. Kojima, M. Tokumaru, H. Watanabe, A. Yokobe, K. Asai, B.V. Jackson, P.L. Hick, Heliospheric tomography using interplanetary scintillation observations. 2. latitude and heliocentric distance dependence of solar wind structure at 0.1-1 au. J. Geophys. Res. 103, 1981–1989 (1998)

    Google Scholar 

  • M. Kojima, K. Fujiki, T. Ohmi, M. Tokumaru, A. Yokobe, K. Hakamada, The highest solar wind velocity in a polar region estimated from IPS tomography analysis. Space Sci. Rev. 87, 237–239 (1999). doi:10.1023/A:1005108820106

    Article  ADS  Google Scholar 

  • M. Kojima, K. Fujiki, T. Ohmi, M. Tokumaru, A. Yokobe, K. Hakamada, Latitudinal velocity structures up to the solar poles estimated from interplanetary scintillation tomography analysis. J. Geophys. Res. 106, 15677–15686 (2001)

    Article  ADS  Google Scholar 

  • M. Kojima, M. Tokumaru, K. Fujiki, K. Hayashi, B.V. Jackson, IPS tomographic observations of 3d solar wind structure. Astron. Astrophys. Trans. 26, 467–476 (2007)

    Article  ADS  Google Scholar 

  • M. Kretzschmar, J. Lilensten, J. Aboudarham, Retrieving the solar euv spectral irradiance from the observation of 6 lines. Adv. Space Res. 37, 341–346 (2006). doi:10.1016/j.asr.2005.02.029

    Article  ADS  Google Scholar 

  • S. Kumar, A.L. Broadfoot, Evidence from mariner 10 of solar wind flux depletion at high ecliptic latitudes. Astron. Astrophys. 69, L5-L8 (1978).

    ADS  Google Scholar 

  • S. Kumar, A.L. Broadfoot, Signatures of solar wind latitudinal structure in interplanetary Lyman-α emissions: mariner 10 observations. Astrophys. J. 228, 302–311 (1979)

    Article  ADS  Google Scholar 

  • E. Kyrölä, T. Summanen, P. Råback, Solar cycle and interplanetary hydrogen. Astron. Astrophys. 288, 299–314 (1994)

    ADS  Google Scholar 

  • E. Kyrölä, T. Summanen, T. Mäkinen, E. Quémerais, J.-L. Bertaux, R. Lallement, J. Costa, Preliminary retrieval of solar wind anisotropies / SOHO observations. J. Geophys. Res. 103, 14523–14538 (1998)

    Article  ADS  Google Scholar 

  • R. Lallement, A.I. Stewart, Out-of-ecliptic lyman-alpha observations with Pioneer-Venus: solar wind anisotropy degree in 1986. Astron. Astrophys. 227, 600–608 (1990)

    ADS  Google Scholar 

  • R. Lallement, J.-L. Bertaux, F. Dalaudier, Interplanetary lyman α spectral profiles and intensities for both repulsive and attractive solar force fields: predicted absorption pattern by a hydrogen cell. Astron. Astrophys. 150, 21–32 (1985a)

    ADS  Google Scholar 

  • R. Lallement, J.-L. Bertaux, V.G. Kurt, Solar wind decrease at high heliographic latitudes detected from prognoz interplanetary lyman alpha mapping. J. Geophys. Res. 90, 1413–1420 (1985b)

    Article  ADS  Google Scholar 

  • R. Lallement, T.E. Holzer, R.H. Munro, Solar wind expansion in a polar coronal hole: inferences from coronal white light and interplanetary lyman alpha observations. J. Geophys. Res. 91, 6751–6759 (1986)

    Article  ADS  Google Scholar 

  • R. Lallement, E. Quémerais, P. Lamy, J.L. Bertaux, S. Ferron, W. Schmidt, The solar wind as seen by SOHO/SWAN since 1996: comparison with SOHO/LASCO C2 coronal densities. In Proceedings of SOHO 23 Workshop, ed. by S. Cranmer, T. Hoeksma, J. Kohl. ASP Conference Series, vol. 428 (2010), pp. 253–258

    Google Scholar 

  • A.J. Lazarus, K. Paularena, A comparison of solar wind parameters from experiments on the IMP 8 and Wind spacecraft. In Measurement Techniques in Space Plasmas, ed. by E. Borovsky, F. Pfaff, T. Young. AGU Geophysical Monograph Series, vol. 102 (1998), pp. 85–90

    Google Scholar 

  • G. Le Chat, K. Issautier, N. Meyer-Vernet, I. Zouganelis, M. Moncuquet, S. Hoang, Quasi-thermal noise spectroscopy: preliminary comparison between kappa and sum of two Maxwellian distributions, in Twelfth International Solar Wind Conference, vol. 1216, pp. 316–319 (2010). doi:10.1063/1.3395864

    Google Scholar 

  • G. Le Chat, K. Issautier, N. Meyer-Vernet, S. Hoang, Large-scale variation of solar wind electron properties from quasi-thermal noise spectroscopy: Ulysses measurements. Solar Phys. 271, 141–148 (2011). doi:10.1007/s11207-011-9797-3

    Article  ADS  Google Scholar 

  • J.L. Lean, H.P. Warren, J.T. Mariska, J. Bishop, A new model of solar euv irradiance variability 2. comparisons with empirical models and observations and implications for space weather. J. Geophys. Res. 108, 1059 (2003). doi:10.1029/2001JA009238

    Google Scholar 

  • J.L. Lean, T.N. Woods, F.G. Eparvier, R.R. Meier, D.J. Strickland, J.T. Correira, J.S. Evans, Solar extreme ultraviolet irradiance: present, past, and future. J. Geophys. Res. 116, A01102 (2011). doi:10.1029/2010JA015901

    Article  ADS  Google Scholar 

  • M.A. Lee, H.J. Fahr, H. Kucharek, E. Möbius, C. Prested, N.A. Schwadron, P. Wu, Physical processes in the outer heliosphere. Space Sci. Rev. 146, 275–294 (2009). doi:10.1007/s11214-009-9522-9

    Article  ADS  Google Scholar 

  • P. Lemaire, J. Charra, A. Jouchoux, A. Vidal-Madjar, G.E. Artzner, J.C. Vial, R.M. Bonnet, A. Skumanich, Calibrated full disk solar H I Lyman-alpha and Lyman-beta profiles. Astrophys. J. Lett. 223, L55–L58 (1978). doi:10.1086/182727

    Article  ADS  Google Scholar 

  • P. Lemaire, C. Emerich, W. Curdt, U. Schühle, K. Wilhelm, Solar HI Lyman α full disk profile obtained with the SUMER/SOHO spectrometer. Astron. Astrophys. 334, 1095–1098 (1998)

    ADS  Google Scholar 

  • P.L. Lemaire, C. Emerich, J.-C. Vial, W. Curdt, U. Schühle, K. Wilhelm, Variation of the full sun hydrogen lyman α and \(\beta \) profiles with the activity cycle, in ESSP A-508: From solar min to max: half a solar cycle with SOHO, 2002, pp. 219–222

    Google Scholar 

  • P. Lemaire, C. Emerich, J.-C. Vial, W. Curdt, U. Schühle, K. Wilhelm, Variation of the full sun hydrogen Lyman profiles through solar cycle 23. Adv. Space Res. 35, 384–387 (2005)

    Article  ADS  Google Scholar 

  • P.C. Liewer, B.E. Goldstein, N. Omidi, Hybrid simulations of the effects of interstellar pickup hydrogen on the solar wind termination shock. J. Geophys. Res. 981, 15211–15220 (1993). doi:10.1029/93JA01172

    Article  ADS  Google Scholar 

  • B.G. Lindsay, R.F. Stebbings, Charge transfer cross sections for energetic neutral atom data analysis. J. Geophys. Res. 110, A12213 (2005). doi:10.1029/2005JA011298

    Article  ADS  Google Scholar 

  • W. Lotz, An empirical formula for the electron-impact ionization cross-section. Zeitschrift f. Phys. 206, 205–211 (1967a)

    Article  ADS  Google Scholar 

  • W. Lotz, Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions. Ap. J. Suppl. 14, 207–238 (1967b)

    Article  ADS  Google Scholar 

  • E.F. Lyon, H.S. Bridge, J.H. Binsack, Explorer 35 plasma measurements in the vicinity of the moon. J. Geophys. Res. 72, 6113–6117 (1967). doi:10.1029/JZ072i023p06113

    Article  ADS  Google Scholar 

  • E.F. Lyon, A. Egidi, G. Pizella, H.S. Bridge, J.S. Binsack, R. Baker, R. Butler, Plasma measurements on Explorer 33 (I) interplanetary region. Space Research, VIII, 99 (1968)

    Google Scholar 

  • L.J. Maher, B.A. Tinsley, Atomic hydrogen escape rate due to charge exchange with hot plasmaspheric ions. J. Geophys. Res. 82, 689–695 (1977)

    Article  ADS  Google Scholar 

  • M. Maksimovic, V. Pierrard, P. Riley, Ulysses distributions fitted with Kappa functions. Geophys. Res. Lett. 24, 1151–1154 (1997). doi:10.1029/97GL00992

    Article  ADS  Google Scholar 

  • M. Maksimovic, S.P. Gary, R.M. Skoug, Solar wind electron suprathermal strength and temperature gradients: Ulysses observations. J. Geophys. Res. 105, 18337–18350 (2000)

    Article  ADS  Google Scholar 

  • M. Maksimovic, I. Zouganelis, J.-Y. Chaufray, K. Issautier, E.E. Scime, J.E. Littleton, E. Marsch, D.J. McComas, C. Salem, R.P. Lin, H. Elliott, Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J. Geophys. Res. 110, A9104 (2005). doi:10.1029/2005JA011119

    Google Scholar 

  • Y. Malama, V.V. Izmodenov, S.V. Chalov, Modeling of the heliospheric interface: multi-component nature of the heliospheric plasma. Astron. Astrophys. 445, 693–701 (2006)

    Article  ADS  Google Scholar 

  • P.K. Manoharan, Three-dimensional structure of the solar wind: Variation of density with the solar cycle. Sol. Phys. 148, 153–167 (1993). doi:10.1007/BF00675541

    Article  ADS  Google Scholar 

  • R.G. Marsden, E.J. Smith, Ulysses: a summary of the first high-latitude survey. Adv. Space Res. 19, (6)825–(6)834 (1997)

    Google Scholar 

  • D.J. McComas, S. J. Bame, P. Barker, W. C. Feldman, J. L. Phillips, P. Riley, J.W. Griffee, Solar wind electron proton alpha monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci. Rev. 86, 563–612 (1998a)

    Article  ADS  Google Scholar 

  • D.J. McComas, S.J. Bame, B.L. Barraclough, W.C. Feldman, W.C. Funsten, J.T. Gosling, P. Riley, R. Skoug, Ulysses’ return to the slow solar wind. Geophys. Res. Lett. 25(1), 1-4 (1998)

    Article  ADS  Google Scholar 

  • D.J. McComas, H.O. Funsten, J.T. Gosling, W.R. Pryor, Ulysses measurements of variations in the solar wind – interstellar hydrogen charge exchange rate. Geophys. Res. Lett. 26, 2701–2704 (1999)

    Article  ADS  Google Scholar 

  • D.J. McComas, B.L. Barraclough, H.O. Funsten, J.T. Gosling, E. Santiago-Muñoz, B.E. Goldstein, M. Neugebauer, P. Riley, A. Balogh, Solar wind observations over Ulysses first full polar orbit. J. Geophys. Res. 105, 10419–10433 (2000a)

    Article  ADS  Google Scholar 

  • D.J. McComas, J.T. Gosling, R.M. Skoug, Ulysses observations of the irregularly structured mid-latitude solar wind during the approach to solar maximum. Geophys. Res. Lett. 27, 2437–2440 (2000b)

    Article  ADS  Google Scholar 

  • D.J. McComas, H.A. Elliot, R. von Steiger, Solar wind from high-latitude coronal holes at solar maximum. Geophys. Res. Lett. 29, 1314 (2002a). doi:10.1029/2001GL013940

    Article  ADS  Google Scholar 

  • D.J. McComas, H.A. Elliott, J.T. Gosling, D.B. Reisenfeld, R.M. Skoug, B.E. Goldstein, M. Neugebauer, A. Balogh, Ulysses second fast-latitude scan: Complexity near solar maximum and the reformation of polar coronal holes. Geophys. Res. Lett. 29, 1290 (2002b). doi:10.1029/2001GL014164

    Article  ADS  Google Scholar 

  • D.J. McComas, H.A. Elliot, N.A. Schwadron, J.T. Gosling, R.M. Skoug, B.E. Goldstein, The three-dimensional solar wind around solar maximum, Geophys. Res. Lett. 30, 24–1, (2003). doi:10.1029/2003GL017136

    Article  Google Scholar 

  • D.J. McComas, F. Allegrini, L. Bartolone, P. Bochsler, M. Bzowski, M. Collier, H. Fahr, H. Fichtner, P. Frisch, H. Funsten, S. Fuselier, G. Gloeckler, M. Gruntman, V. Izmodenov, P. Knappenberger, M. Lee, S. Livi, D. Mitchell, E. Möbius, T. Moore, S. Pope, D. Reisenfeld, E. Roelof, H. Runge, J. Scherrer, N. Schwadron, R. Tyler, M. Wieser, M. Witte, P. Wurz, G. Zank, The Interstellar Boundary Explorer (IBEX): Update at the end of phase B, in Physics of the Inner Heliosheath, ed. by J. Heerikhuisen, V. Florinski, G.P. Zank, N.V. Pogorelov. American Institute of Physics Conference Series, vol. 858 (American Institute of Physics, Woodbury, New York, 2006), pp. 241–250

    Google Scholar 

  • D.J. McComas, R.W. Ebert, H.A. Elliot, B.E. Goldstein, J.T. Gosling, N.A. Schwadron, R.M. Skoug, Weaker solar wind from the polar coronal holes and the whole sun, Geophys. Res. Lett. 35, L18103 (2008). doi:10.1029/2008GL034896

    Article  ADS  Google Scholar 

  • D.J. McComas, F. Allegrini, P. Bochsler, M. Bzowski, E.R. Christian, G.B. Crew, R. DeMajistre, H. Fahr, H. Fichtner, P.C. Frisch, H.O. Funsten, S.A. Fuselier, G. Gloeckler, M. Gruntman, J. Heerikhuisen, V. Izmodenov, P. Janzen, P. Knappenberger, S. Krimigis, H. Kucharek, M. Lee, G. Livadiotis, S. Livi, R.J. MacDowall, D. Mitchell, E. Möbius, T. Moore, N.V. Pogorelov, D. Reisenfeld, E. Roelof, L. Saul, N.A. Schwadron, P.W. Valek, R. Vanderspek, P. Wurz, G.P. Zank, Global observations of the interstellar interaction from the Interstellar Boundary Explorer (IBEX). Science 326, 959–962 (2009a). doi:10.1126/science.1180906

    Article  ADS  Google Scholar 

  • D.J. McComas, F. Allegrini, P. Bochsler, M. Bzowski, M. Collier, H. Fahr, H. Fichtner, P. Frisch, H.O. Funsten, S.A. Fuselier, G. Gloeckler, M. Gruntman, V. Izmodenov, P. Knappenberger, M. Lee, S. Livi, D. Mitchell, E. Möbius, T. Moore, S. Pope, D. Reisenfeld, E. Roelof, J. Scherrer, N. Schwadron, R. Tyler, M. Wieser, M. Witte, P. Wurz, G. Zank, IBEX - Interstellar Boundary Explorer, Space Sci. Rev. 146, 11–33 (2009b). doi:10.1007/s11214-009-9499-4

    Article  ADS  Google Scholar 

  • E. Möbius, D. Hovestadt, B. Klecker, M. Scholer, G. Gloeckler, Direct observation of He+ pick-up ions of interstellar origin in the solar wind. Nature 318, 426–429 (1985)

    Article  ADS  Google Scholar 

  • E. Möbius, B. Klecker, D. Hovestadt, M. Scholer, Interaction of interstellar pick-up ions with the solar wind. Astrophys. Space Sci. 144, 487–505 (1988)

    ADS  Google Scholar 

  • M. Neugebauer, Initial deceleration of solar wind positive ions in the earth’s bow shock. J. Geophys. Res. 75, 717–733 (1970)

    Article  ADS  Google Scholar 

  • M. Neugebauer, C.W. Snyder, Solar plasma experiment. Science 138, 1095–1097 (1962). doi:10.1029/JA075i004p00717

    Article  ADS  Google Scholar 

  • H.S. Ogawa, C.Y.R. Wu, P. Gangopadhyay, D.L. Judge, Solar photoionization as a loss mechanism of neutral interstellar hydrogen in interplanetary space. J. Geophys. Res. 100, 3455–3462 (1995)

    Article  ADS  Google Scholar 

  • K.W. Ogilvie, L.F. Burlaga, T.D. Wilkerson, Plasma observations on Explorer 34. J. Geophys. Res. 73, 6809–6824 (1968). doi:10.1029/JA073i021p06809

    Article  ADS  Google Scholar 

  • T. Ohmi, M. Kojima, A. Yokobe, M. Tokumaru, K. Fujiki, K. Hakamada, Polar low-speed solar wind at the solar activity maximum. J. Geophys. Res. 106, 24923–24936 (2001). doi:10.1029/2001JA900094

    Article  ADS  Google Scholar 

  • T. Ohmi, M. Kojima, K. Fujiki, M. Tokumaru, K. Hayashi, K. Hakamada, Polar low-speed solar wind reappeared at the solar activity maximum of cycle 23. Geophys. Res. Lett. 30, 1409 (2003). doi:10.1029/2002GL016347

    Article  ADS  Google Scholar 

  • R. Osterbart, H.-J. Fahr, A Boltzmann-kinetic approach to describe entrance of neutral interstellar hydrogen into the heliosphere. Astron. Astrophys. 264, 260–269 (1992)

    ADS  Google Scholar 

  • S.P. Owocki, T.E. Holzer, A.J. Hundhausen, The solar wind ionization state as a coronal temperature diagnostic. Astrophys. J. 275, 354–366 (1983)

    Article  ADS  Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958)

    Article  ADS  Google Scholar 

  • J.L. Phillips, S.J. Bame, A. Barnes, B.L. Barrcalough, W.C. Feldman, B.E. Goldstein, J.T. Gosling, G.W. Hoogveen, D.J. McComas, M. Neugebauer, S.T. Suess, Ulysses solar wind plasma observations from pole to pole. Geophys. Res. Lett. 22, 3301–3304 (1995a)

    Article  ADS  Google Scholar 

  • J.L. Phillips, S.J. Bame, W.C. Feldman, J.T. Gosling, C.M. Hammond, D.J. McComas, B.E. Goldstein, M. Neugebauer, Ulysses solar wind plasma observations during the declining phase of solar cycle 22. Adv. Space Res. 16, (9)85–(9)94 (1995b)

    Google Scholar 

  • W.G. Pilipp, K.-H. Muehlhaeuser, H. Miggenrieder, M.D. Montgomery, H. Rosenbauer, Unusual electron distribution functions in the solar wind derived from the HELIOS plasma experiment—double-strahl distributions and distributions with an extremely anisotropic core. J. Geophys. Res. 92, 1093–1101 (1987a)

    Article  ADS  Google Scholar 

  • W.G. Pilipp, K.-H. Muehlhaeuser, H. Miggenrieder, M.D. Montgomery, H. Rosenbauer, Characteristics of electron velocity distribution functions in the solar wind derived from the HELIOS plasma experiment. J. Geophys. Res. 92, 1075–1092 (1987b)

    Article  ADS  Google Scholar 

  • W.R. Pryor, J.M. Ajello, C.A. Barth, C.W. Hord, A.I.F. Stewart, K.E. Simmons, W.E. McClintock, B.R. Sandel, D.E. Shemansky, The Galileo and Pioneer Venus ultraviolet spectrometer experiments: solar Lyman-α latitude variation at solar maximum from interplanetary Lyman-α observations. Astrophys. J. 394, 363–377 (1992)

    Article  ADS  Google Scholar 

  • W.R. Pryor, M. Witte, J.M. Ajello, Interplanetary Lyman α remote sensing with the Ulysses interstellar neutral gas experiment. J. Geophys. Res. 103, 26813–26831 (1998)

    Article  ADS  Google Scholar 

  • W.R. Pryor, J.M. Ajello, D.J. McComas, M. Witte, W.K. Tobiska, Hydrogen atom lifetimes in the three-dimensional heliosphere over the solar cycle. J. Geophys. Res. 108, 8034 (2003). doi:10.1029/2003JA009878

    Article  Google Scholar 

  • E. Quémerais, The interplanetary Lyman-α background, in The Physics of the Heliospheric Boundaries, ed. by V.V. Izmodenov, R. Kallenbach, ISSI Scientific Report Series, SR-005, pp. 283–310 (2006)

    Google Scholar 

  • E. Quémerais, R. Lallement, S. Ferron, D. Koutroumpa, J.-L. Bertaux, E. Kyrölä, W. Schmidt, Interplanetary hydrogen absolute ionization rates: retrieving the solar wind mass flux latitude and cycle dependence with SWAN/SOHO maps. J. Geophys. Res. 111, 9114–9131 (2006). doi:10.1029/2006JA011711

    Article  Google Scholar 

  • P.G. Richards, J.A. Fennelly, D.G. Torr, EUVAC: a solar euv flux model for aeronomic calculations. J. Geophys. Res. 99, 8981–8992 (1994). doi:10.1029/94JA00518

    Article  ADS  Google Scholar 

  • J.D. Richardson, K.I. Paularena, A.J. Lazarus, J.W. Belcher, Radial evolution of the solar wind from IMP-8 to Voyager 2. Geophys. Res. Lett. 22, 325–328 (1995)

    Article  ADS  Google Scholar 

  • J.D. Richardson, J.C. Kasper, C. Wang, J.W. Belcher, A.J. Lazarus, Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 454, 63–66 (2008a). doi:10.1038/nature07024

    Article  ADS  Google Scholar 

  • J.D. Richardson, Y. Liu, C. Wang, D.J. McComas, Determining the LIC H density from the solar wind slow down. Astron. Astrophys. 491, 1–5 (2008b). doi:10.1051/0004-6361:20078565

    Article  ADS  Google Scholar 

  • D. Ruciński, M. Bzowski, Solar cycle dependence of the production of H+ pick-up ions in the inner heliosphere. Adv. Space Res. 16, 121–124 (1995)

    Article  ADS  Google Scholar 

  • D. Ruciński, H.-J. Fahr, The influence of electron impact ionization on the distribution of interstellar helium in the inner heliosphere: possible consequences for determination of interstellar helium parameters. Astron. Astrophys. 224, 290–298 (1989)

    ADS  Google Scholar 

  • D. Ruciński, H.-J. Fahr, Nonthermal ions of interstellar origin at different solar wind conditions. Ann. Geophys. 9, 102–110 (1991)

    ADS  Google Scholar 

  • D. Ruciński, M. Bzowski, H.-J. Fahr, Minor helium components co-moving with the solar wind. Astron. Astrophys. 334, 337–354 (1998)

    ADS  Google Scholar 

  • C. Salem, J.-M. Bosqued, D.E. Larson, A. Mangeney, M. Maksimovic, C. Perche, R.P. Lin, J.-L. Bougeret, Determination of accurate solar wind electron parameters using particle detectors and radio wave receivers. J. Geophys. Res. 106, 21701–21717 (2001). doi:10.1029/2001JA900031

    Article  ADS  Google Scholar 

  • C. Salem, S. Hoang, K. Issautier, M. Maksimovic, C. Perche, WIND-Ulysses in-situ thermal noise measurements of solar wind electron density and core temperature at solar maximum and minimum. Adv. Space Res. 32, 491–496 (2003). doi:10.1016/S0273-1177(03)00354-5

    Article  ADS  Google Scholar 

  • H. Scherer, M. Bzowski, H.-J. Fahr, D. Ruciński, Improved analysis of interplanetary HST-H\(_{\mathrm{Ly}\alpha }\) spectra using time-dependent modelings. Astron. Astrophys. 342, 601–609 (1999)

    ADS  Google Scholar 

  • H. Scherer, H.-J. Fahr, M. Bzowski, D. Ruciński, The influence of fluctuations of the solar emission line profile on the Doppler shift of interplanetary H Lyα lines observed by the Hubble-Space-Telescope. Astrophys. Space Sci. 274, 133–141 (2000)

    Article  ADS  Google Scholar 

  • E.E. Scime, S.J. Bame, W.C. Feldman, S.P. Gary, J.L. Phillips, Regulation of the solar wind electron heat flux from 1 to 5 au JGR 99, 23401–23410 (1994)

    Google Scholar 

  • G.J. Smith, L.K. Johnson, R.S. Gao, K.A. Smith, R.F. Stebbings, Absolute differential cross sections for electron capture and loss by kilo-electron-volt hydrogen atoms. Phys. Rev. A 44, 5647–5652 (1991)

    Article  ADS  Google Scholar 

  • J.M. Sokół, M. Bzowski, M. Tokumaru, K. Fujiki, D.J. McComas, Heliolatitude and time variations of solar wind structure from in-situ measurements and interplanetary scintillation observations. Solar Phys. (2012). doi: 10.1007/s11207-012-9993-9.

    Google Scholar 

  • Š. Štverák, P.M. Trávníček, M. Maksimovic, E. Marsch, A.N. Fazakerley, E.E. Scime, Electron temperature anisotropy constraints in the solar wind. J. Geophys. Res. 113, A03103 (2008). doi:10.1029/2007JA012733

    Article  ADS  Google Scholar 

  • Š. Štveràk, M. Maksimovic, P.M. Trávníček, E. Marsch, A.N. Fazakerley, E.E. Scime, Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses observations. J. Geophys. Res. 114, A05104 (2009). doi:10.1029/2008JA013883

    Article  ADS  Google Scholar 

  • T. Summanen, The effect of the time and latitude-dependent solar ionisation rate on the measured Lyman-α-intensity. Astron. Astrophys. 314, 663–671 (1996)

    ADS  Google Scholar 

  • T. Summanen, R. Lallement, J.-L. Bertaux, E. Kyrölä, Latitudinal distribution of solar wind as deduced from Lyman alpha measurements: an improved method. J. Geophys. Res. 98, 13215–13224 (1993)

    Article  ADS  Google Scholar 

  • K.F. Tapping, Recent solar radio astronomy at centimeter wavelengths - the temporal variability of the 10.7-cm flux. J. Geophys. Res. 92, 829–838 (1987). doi:10.1029/JD092iD01p00829

    Google Scholar 

  • S.T. Tarnopolski, Expected distribution of interstellar deuterium in the heliosphere. Dissertation. Space Research Centre PAS, 2007

    Google Scholar 

  • S. Tarnopolski, M. Bzowski, Detectability of neutral interstellar deuterium by a forthcoming SMEX mission IBEX. Astron. Astrophys. 483, L35-L38 (2008a). doi:10.1051/0004-6361:200809593

    Article  ADS  Google Scholar 

  • S. Tarnopolski, M. Bzowski, Neutral interstellar hydrogen in the inner heliosphere under the influence of wavelength-dependent solar radiation pressure. Astron. Astrophys. 493, 207–216 (2008b). doi:10.1051/0004-6361:20077058

    Article  ADS  Google Scholar 

  • G.E. Thomas, The interstellar wind and its influence on the interplanetary environment. Ann. Rev. Earth Planet. Sci. 6, 173–204 (1978)

    Article  ADS  Google Scholar 

  • H. Tian, W. Curdt, E. Marsch, U. Schühle, Hydrogen Lyman-α and Lyman-\(\beta \) spectral radiance profiles in the quiet sun. Astron. Astrophys. 504, 239–248 (2009a). doi:10.1051/0004-6361/200811445

    Article  ADS  Google Scholar 

  • H. Tian, W. Curdt, L. Teriaca, E. Landi, E. Marsch, Solar transition region above sunspots. Astron. Astrophys. 505, 307–318 (2009b). doi:10.1051/0004-6361/200912114

    Article  ADS  Google Scholar 

  • H. Tian, L. Teriaca, W. Curdt, J.-C. Vial, Hydrogen Ly α and Ly \(\beta \) radiances and profiles in polar coronal holes. Astrophys. J. Lett. 703, L152–L156 (2009c). doi:10.1088/0004-637X/703/2/L152

    Article  ADS  Google Scholar 

  • W.K. Tobiska, T. Woods, F. Eparvier, R. Viereck, L.E. Floyd, D. Bouwer, G. Rottman, O.R. White, The SOLAR2000 empirical solar irradiance model and forecast tool. J. Atmos. Sol. Terr. Phys. 62, 1233–1250 (2000)

    Article  ADS  Google Scholar 

  • M. Tokumaru, M. Kojima, K. Fujiki, K. Hayashi, Non-dipolar solar wind structure observed in the cycle 23/24 minimum. Geophys. Res. Lett. 360, L09101 (2009). doi:10.1029/2009GL037461

    Article  ADS  Google Scholar 

  • M. Tokumaru, M. Kojima, K. Fujiki, Solar cycle evolution of the solar wind speed distribution from 1985 to 2008. J. Geophys. Res. 115, A04102 (2010). doi:10.1029/2009JA014628

    Article  ADS  Google Scholar 

  • A.V. Usmanov, W.H. Matthaeus, B.A. Breech, M.L. Goldstein, Solar wind modeling with turbulence transport and heating. Astrophys. J. 727, 84 (2011). doi:10.1088/0004-637X/727/2/84

    Article  ADS  Google Scholar 

  • V. Vasyliunas, G. Siscoe, On the flux and the energy spectrum of interstellar ions in the solar wind. J. Geophys. Res. 81, 1247–1252 (1976)

    Article  ADS  Google Scholar 

  • D.A. Verner, G.J. Ferland, T.K. Korista, D.G. Yakovlev, Atomic data for astrophysics. ii. new fits for photoionization cross-sections of atoms and ions. Astrophys. J. 465, 487–498 (1996)

    Google Scholar 

  • I.S. Veselovsky, A.V. Dmitriev, A.V. Suvorova, Algebra and statistics of the solar wind. Cosmic Res. 48, 113–128 (2010). doi:10.1134/S0010952510020012

    Article  ADS  Google Scholar 

  • A. Vidal-Madjar, Evolution of the solar Lyman alpha flux during four consecutive years. Solar Phys. 40, 69–86 (1975)

    Article  ADS  Google Scholar 

  • A. Vidal-Madjar, B. Phissamay, The solar L α flux near solar minimum. Solar Phys. 66, 259–271 (1980)

    Article  ADS  Google Scholar 

  • R.A. Viereck, L.C. Puga, The NOAA Mg II core-to-wing solar index: construction of a 20-year time series of chromospheric variability from multiple satellites. J. Geophys. Res. 104, 9995–10006 (1999). doi:10.1029/1998JA900163

    Article  ADS  Google Scholar 

  • M.E. Wachowicz, Global model of distribution of ionization states of heavy ions from solar plasma in the heliosphere (in Polish). Dissertation, Space Research Centre PAS, 2006

    Google Scholar 

  • H.P. Warren, NRLEUV 2, A new model of solar euv irradiance variability. Adv. Space Res. 37, 359–365 (2006). doi:10.1016/j.asr.2005.10.028

    Article  Google Scholar 

  • H.P. Warren, J.T. Mariska, J.L. Lean, A new reference spectrum for the euv irradiance of the quiet sun 1. emission measure formulation. J. Geophys. Res. 103, 12077–12090 (1998a). doi:10.1029/98JA00810

    Google Scholar 

  • H.P. Warren, J.T. Mariska, J.L. Lean, A new reference spectrum for the euv irradiance of the quiet sun 2. comparisons with observations and previous models. J. Geophys. Res. 103, 12091–12102 (1998b). doi:10.1029/98JA00811

    Google Scholar 

  • H.P. Warren, J.T. Mariska, K. Wilhelm, High-resolution observations of the solar hydrogen Lyman lines in the quiet sun with the SUMER instrument on SOHO. Astrophys. J. Suppl 119, 105–120 (1998c). doi:10.1086/313151

    Article  ADS  Google Scholar 

  • K.-P. Wenzel, R.G. Marsden, D.E. Page, E.J. Smith, Ulysses: the first high-latitude heliospheric mission. Adv. Space Res. 9, 25–29 (1989). doi:10.1016/0273-1177(89) 90089-6

    Article  ADS  Google Scholar 

  • T.N. Woods, G.J. Rottman, O.R. White, J. Fontenla, E.H. Avrett, The solar Ly-alpha line profile. Astrophys. J. 442, 898–906 (1995). doi:10.1086/175492

    Article  ADS  Google Scholar 

  • T.N. Woods, D.K. Prinz, G.J. Rottman, J. London, P.C. Crane, R.P. Cebula, E. Hilsenrath, G.E. Brueckner, M.D. Andrews, O.R. White, M.E. VanHoosier, L.E. Floyd, L.C. Herring, B.G. Knapp, C.K. Pankratz, P.A. Reiser, Validation of the UARS solar ultraviolet irradiances: comparison with the ATLAS 1 and 2 measurements. J. Geophys. Res. 101, 9541–9570 (1996). doi:10.1029/96JD00225

    Article  ADS  Google Scholar 

  • T.N. Woods, W.K. Tobiska, G.J. Rottman, J.R. Worden, Improved solar Lyman irradiance modeling from 1979 through 1999 based on UARS observations. J. Geophys. Res. 105, 27195–27215 (2000)

    Article  ADS  Google Scholar 

  • T.N. Woods, F.G. Eparvier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, D.L. Woodraska, Solar euv experiment (SEE): mission overview and first results. J. Geophys. Res. 110, A01312 (2005). doi:10.1029/2004JA010765

    Article  ADS  Google Scholar 

  • F.M. Wu, D.L. Judge, Temperature and velocity of the interplanetary gases along solar radii. Astrophys. J. 231, 594–605 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bzowski, M. et al. (2013). Solar Parameters for Modeling the Interplanetary Background. In: Quémerais, E., Snow, M., Bonnet, RM. (eds) Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere. ISSI Scientific Report Series, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6384-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6384-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6383-2

  • Online ISBN: 978-1-4614-6384-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics