Skip to main content

Simple Harmonic Oscillator Based Reconstruction and Estimation for One-Dimensional q-Space Magnetic Resonance (1D-SHORE)

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 2

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1753 Accesses

Abstract

The movements of endogenous molecules during the magnetic resonance acquisition influence the resulting signal. By exploiting the sensitivity of diffusion on the signal, q-space MR has the ability to transform a set of diffusion-attenuated signal values into a probability density function or propagator that characterizes the diffusion process. Accurate estimation of the signal values and reconstruction of the propagator demand sophisticated tools that are well suited to these estimation and reconstruction problems. In this work, a series representation of one-dimensional q-space signals is presented in terms of a complete set of orthogonal Hermite functions. The basis possesses many interesting properties relevant to q-space MR, such as the ability to represent both the signal and its Fourier transform. Unlike the previously employed cumulant expansion, biexponential fit, and similar methods, this approach is linear and capable of reproducing complicated signal profiles, e.g., those exhibiting diffraction peaks. The estimation of the coefficients is fast and accurate while the representation lends itself to a direct reconstruction of ensemble average propagators as well as calculation of useful descriptors of it, such as the return-to-origin probability and its moments. In axially symmetric and isotropic geometries, respectively, two- and three-dimensional propagators can be reconstructed from one-dimensional q-space data. Useful relationships between the one- and higher-dimensional propagators in such environments are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Hardcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Assemlal, H.E., Tschumperlé, D., Brun, L.: Efficient and robust computation of PDF features from diffusion MR signal. Med. Image Anal. 13(5), 715–729 (2009). DOI 10.1016/j.media.2009.06.004. URL http://dx.doi.org/10.1016/j.media.2009.06.004

  2. Bennett, K.M., Schmainda, K.M., Bennett(Tong), R., Rowe, D.B., Lu, H., Hyde, J.S.: Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn. Reson. Med. 50(4), 727–734 (2003)

    Google Scholar 

  3. Bracewell, R.N.: The Fourier Transform and Its Applications. McGraw-Hill, New York (1978)

    Google Scholar 

  4. Callaghan, P.T., Coy, A., MacGowan, D., Packer, K.J., Zelaya, F.O.: Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature 351, 467–469 (1991)

    Google Scholar 

  5. Cohen, Y., Assaf, Y.: High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues—a technical review. NMR Biomed. 15, 516–542 (2002)

    Google Scholar 

  6. Cory, D.G., Garroway, A.N.: Measurement of translational displacement probabilities by NMR: An indicator of compartmentation. Magn. Reson. Med. 14(3), 435–444 (1990)

    Google Scholar 

  7. Frøhlich, A.F., Østergaard, L., Kiselev, V.G.: Effect of impermeable boundaries on diffusion-attenuated MR signal. J. Magn. Reson. 179(2), 223–233 (2006). DOI 10.1016/j.jmr.2005.12.005. URL http://dx.doi.org/10.1016/j.jmr.2005.12.005

    Google Scholar 

  8. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic, New York (2000)

    Google Scholar 

  9. Hahn, E.L.: Spin echoes. Phys. Rev. 80, 580–594 (1950)

    Google Scholar 

  10. Hürlimann, M.D., Schwartz, L.M., Sen, P.N.: Probability of return to origin at short times: A probe of microstructure in porous media. Phys. Rev. B 51(21), 14,936–14,940 (1995)

    Google Scholar 

  11. Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53, 1432–1440 (2005)

    Google Scholar 

  12. Jian, B., Vemuri, B.C., Özarslan, E., Carney, P.R., Mareci, T.H.: A novel tensor distribution model for the diffusion-weighted MR signal. NeuroImage 37(1), 164–176 (2007). DOI 10.1016/j.neuroimage.2007.03.074. URL http://dx.doi.org/10.1016/j.neuroimage.2007.03.074

  13. Kärger, J., Heink, W.: The propagator representation of molecular transport in microporous crystallites. J. Magn. Reson. 51(1), 1–7 (1983)

    Google Scholar 

  14. Kiselev, V.G., Il’yasov, K.A.: Is the “biexponential diffusion” biexponential? Magn. Reson. Med. 57(3), 464–469 (2007). DOI 10.1002/mrm.21164. URL http://dx.doi.org/10.1002/mrm.21164

  15. Köpf, M., Metzler, R., Haferkamp, O., Nonnenmacher, T.F.: NMR studies of anomalous diffusion in biological tissues: Experimental observation of Lévy stable processes. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds.) Fractals in Biology and Medicine, vol. 2, pp. 354–364. Birkhäuser, Basel (1998)

    Google Scholar 

  16. Liu, C.L., Bammer, R., Moseley, M.E.: Generalized diffusion tensor imaging (GDTI): A method for characterizing and imaging diffusion anisotropy caused by non-Gaussian diffusion. Isr. J. Chem. 43(1–2), 145–154 (2003)

    Google Scholar 

  17. McCall, D.W., Douglass, D.C., Anderson, E.W.: Self-diffusion studies by means of nuclear magnetic resonance spin-echo techniques. Ber. Bunsenges. Phys. Chem. 67, 336–340 (1963)

    Google Scholar 

  18. Mitra, P.P., Sen, P.N.: Effects of microgeometry and surface relaxation on NMR pulsed-field-gradient experiments: simple pore geometries. Phys. Rev. B 45, 143–156 (1992)

    Google Scholar 

  19. Mulkern, R.V., Gudbjartsson, H., Westin, C.F., Zengingönül, H.P., Gartner, W., Guttmann, C.R., Robertson, R.L., Kyriakos, W., Schwartz, R., Holtzman, D., Jolesz, F.A., Maier, S.E.: Multi-component apparent diffusion coefficients in human brain. NMR Biomed. 12(1), 51–62 (1999)

    Google Scholar 

  20. Niendorf, T., Dijkhuizen, R.M., Norris, D.G., van Lookeren Campagne, M., Nicolay, K.: Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn. Reson. Med. 36(6), 847–857 (1996)

    Google Scholar 

  21. Ohanian, H.C.: Principles of Quantum Mechanics. Prentice-Hall, Englewood Cliffs (1990)

    Google Scholar 

  22. Özarslan, E.: Compartment shape anisotropy (CSA) revealed by double pulsed field gradient MR. J. Magn. Reson. 199(1), 56–67 (2009). DOI 10.1016/j.jmr.2009.04.002. URL http://dx.doi.org/10.1016/j.jmr.2009.04.002

    Google Scholar 

  23. Özarslan, E., Basser, P.J.: MR diffusion—“diffraction” phenomenon in multi-pulse-field-gradient experiments. J. Magn. Reson. 188(2), 285–294 (2007). DOI 10.1016/j.jmr.2007.08.002. URL http://dx.doi.org/10.1016/j.jmr.2007.08.002

  24. Özarslan, E., Basser, P.J.: Microscopic anisotropy revealed by NMR double pulsed field gradient experiments with arbitrary timing parameters. J. Chem. Phys. 128(15), 154,511 (2008). DOI 10.1063/1.2905765. URL http://dx.doi.org/10.1063/1.2905765

    Google Scholar 

  25. Özarslan, E., Basser, P.J., Shepherd, T.M., Thelwall, P.E., Vemuri, B.C., Blackband, S.J.: Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal. J. Magn. Reson. 183(2), 315–323 (2006). DOI 10.1016/j.jmr.2006.08.009. URL http://dx.doi.org/10.1016/j.jmr.2006.08.009

    Google Scholar 

  26. Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31(3), 1086–1103 (2006). DOI 10.1016/j.neuroimage.2006.01.024. URL http://dx.doi.org/10.1016/j.neuroimage.2006.01.024

    Google Scholar 

  27. Özarslan, E., Koay, C.G., Basser, P.J.: Simple harmonic oscillator based estimation and reconstruction for one-dimensional q-space MR. In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 16, p. 35 (2008)-1.5pc]Please provide complete details for references [27, 30].

    Google Scholar 

  28. Özarslan, E., Nevo, U., Basser, P.J.: Anisotropy induced by macroscopic boundaries: Surface-normal mapping using diffusion-weighted imaging. Biophys. J. 94(7), 2809–2818 (2008). DOI 10.1529/biophysj.107.124081. URL http://dx.doi.org/10.1529/biophysj.107.124081

  29. Özarslan, E., Koay, C.G., Basser, P.J.: Remarks on q-space MR propagator in partially restricted, axially-symmetric, and isotropic environments. Magn. Reson. Imaging 27(6), 834–844 (2009). DOI 10.1016/j.mri.2009.01.005. URL http://dx.doi.org/10.1016/j.mri.2009.01.005

  30. Özarslan, E., Koay, C.G., Shepherd, T.M., Blackband, S.J., Basser, P.J.: Simple harmonic oscillator based reconstruction and estimation for three-dimensional q-space MRI. In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 17, p. 1396 (2009)

    Google Scholar 

  31. Özarslan, E., Shemesh, N., Koay, C.G., Cohen, Y., Basser, P.J.: Nuclear magnetic resonance characterization of general compartment size distributions. New J. Phys. 13, 015,010 (2011)

    Google Scholar 

  32. Pawula, R.F.: Approximation of the linear Boltzmann equation by the Fokker-Planck equation. Phys. Rev. 162, 186–188 (1967)

    Google Scholar 

  33. Pfeuffer, J., Provencher, S.W., Gruetter, R.: Water diffusion in rat brain in vivo as detected at very large b values is multicompartmental. MAGMA 8(2), 98–108 (1999)

    Google Scholar 

  34. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge Press, Cambridge (1992)

    Google Scholar 

  35. Schwartz, S.C.: Estimation of probability density by an orthogonal series. Ann. Math. Statist. 38, 1261–1265 (1967)

    Google Scholar 

  36. Silva, M.D., Helmer, K.G., Lee, J.H., Han, S.S., Springer, C.S., Sotak, C.H.: Deconvolution of compartmental water diffusion coefficients in yeast-cell suspensions using combined T1 and diffusion measurements. J. Magn. Reson. 156(1), 52–63 (2002). DOI 10.1006/ jmre.2002.2527. URL http://dx.doi.org/10.1006/jmre.2002.2527

    Google Scholar 

  37. Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)

    Google Scholar 

  38. Stejskal, E.O.: Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43(10), 3597–3603 (1965)

    Google Scholar 

  39. Stepišnik, J.: Analysis of NMR self-diffusion measurements by a density matrix calculation. Phys. B & C 104, 350–364 (1981)

    Google Scholar 

  40. Tanner, J.E., Stejskal, E.O.: Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J. Chem. Phys. 49(4), 1768–1777 (1968)

    Google Scholar 

  41. Walter, G.G.: Properties of Hermite series estimation of probability density. Ann. Statist. 5, 1258–1264 (1977)

    Google Scholar 

  42. Yablonskiy, D.A., Bretthorst, G.L., Ackerman, J.J.: Statistical model for diffusion attenuated MR signal. Magn. Reson. Med. 50(4), 664–669 (2003)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) at the National Institutes of Health (NIH) and the Department of Defense in the Center for Neuroscience and Regenerative Medicine (CNRM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Basser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Birkhäuser Boston

About this chapter

Cite this chapter

Özarslan, E., Koay, C.G., Basser, P.J. (2013). Simple Harmonic Oscillator Based Reconstruction and Estimation for One-Dimensional q-Space Magnetic Resonance (1D-SHORE). In: Andrews, T., Balan, R., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 2. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8379-5_19

Download citation

Publish with us

Policies and ethics