Skip to main content

Success Stories: Incremental Progress and Scientific Breakthroughs in Life Science Research

  • Chapter
  • First Online:
Breakthroughs in Space Life Science Research

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

Abstract

Research in space life sciences is a multidisciplinary activity that has—over several decades—resulted in many incremental new findings, extensions to our knowledge, and considerable technological progress rather than in just a few spectacular breakthroughs. Although the latter are easier to be appreciated by the public and by politicians, science and research also in terrestrial settings usually take time, money, and patience before a significant progress becomes visible. Nevertheless, we will try in this chapter to convince the dear reader that space life sciences have generated numerous success stories over the years, be it in the form of incremental progress or as real breakthroughs. An even broader view on the accomplishments that are currently delivered by the research and development activities specifically on the International Space Station is published frequently by the ISS partners in “ISS Benefits for Humanity” (latest issue 2019; https://www.nasa.gov/sites/default/files/atoms/files/benefits-for-humanity_third.pdf).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 59.99
Price excludes VAT (USA)
Softcover Book
USD 79.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeln V, MacDonald-Nethercott E, Piacentini MF, Meeusen R, Kleinert J, Strueder HK, Schneider S (2015) Exercise in isolation—a countermeasure for electrocortical, mental and cognitive impairments. PLoS One. https://doi.org/10.1371/journalpone0126356

  • Abeln V, Vogt T, Schneider S (2016) Neurocognitive and neuro-affective effects of exercise. In: Schneider S (ed) Exercise in space, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-29571-8_5

    Chapter  Google Scholar 

  • Ahmed HAM, Häder DP (2011) Monitoring of waste water samples using the ECOTOX biosystem and the flagellate alga Euglena gracilis. Chemistry Water Air Soil Pollut. https://doi.org/10.1007/S11270-010-0552-4

  • Andreev-Andrievskiy A, Popova A, Boyle R, Alberts J, Shenkman B, Vinogradova O, Dolgov O, Anokhin K, Tsvirkun D, Soldatov P, Nemirovskaya T, Ilyin E, Sychev V (2014) Mice in Bion-M 1 Space mission: training and selection. PLoS One 9:1–15. https://doi.org/10.1371/journal.pone.0104830

    Article  Google Scholar 

  • Baevsky RM, Funtova IL, Diedrich A, Chernikova AG, Drescher J, Baranov VM, Tank J (2009) Autonomic function testing aboard the ISS using “PNEUMOCARD”. Acta Astronaut 65:930–932

    Article  Google Scholar 

  • Baevsky RM, Funtova II, Luchitskaya ES, Chernikova AG (2014) The effects of long-term microgravity on autonomic regulation of blood circulation in crewmembers of the international space station. Cardiometry 5:35–49

    Article  Google Scholar 

  • Bailey JF, Miller SL, Khieu K, O’Neill CWO, Healey RM, Coughlin DG, Sayson JV, Chang DG, Hargens AR, Lotz JC (2018) From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability. Spine J 18:7–14. https://doi.org/10.1016/j.spinee.2017.08.261

    Article  PubMed  Google Scholar 

  • Barger LK, Dinges DF, Czeisler CA (2020) Sleep and circadian effects of space. In: Young LR, Sutton JP (eds) Handbook of bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_86-2

    Chapter  Google Scholar 

  • Basner M, Rao H, Goel N, Dinges DF (2013) Sleep deprivation and neurobehavioral dynamics. Curr Opin Neurobiol 23:854–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum K, Essfeld D (1999) Origin of back pain during bedrest: a new hypothesis. Eur J Med Res 4:389–393

    CAS  PubMed  Google Scholar 

  • Baum K, Hoy S, Essfeld D (1997) Continuous monitoring of spine geometry: a new approach to study back pain in space. Int J Sports Med 18:331–333

    Article  Google Scholar 

  • Becker JL, Souza GR (2013) Using space-based investigations to inform cancer research on Earth. Nat Rev Cancer 13:315–327

    Article  CAS  PubMed  Google Scholar 

  • Belavy D, Adams M, Brisby H, Cagnie B, Danneels L, Fairbank J, Hargens AR, Judex S, Scheuring RA, Sovelius R, Urban J, van Dieën JH, Wilke HJ (2016) Disc herniations in astronauts: what causes them, and what does it tell us about herniation on Earth? Eur Spine J 25:144–154. https://doi.org/10.1007/s00586-015-3917-y

    Article  PubMed  Google Scholar 

  • Berger T, Bilski P, Hajek M, Puchalska M, Reitz G (2013) The MATROSHKA experiment: results and comparison from extravehicular activity (MTR-1) and intravehicular activity (MTR-2A/2B) exposure. Radiat Res 180:622–637

    Article  CAS  PubMed  Google Scholar 

  • Bimpong-Buta NY, Jirak P, Wernly B, Lichtenauer M, Knost T, Abusamrah T, Kelm M, Jung C (2018) Blood parameter analysis after short term exposure to weightlessness in parabolic flight. Clin Hemorheol Microcirc 70:477–486. https://doi.org/10.3233/CH-189314

    Article  CAS  PubMed  Google Scholar 

  • Bimpong-Buta NY, Muessig JM, Knost T, Masyuk M, Binneboessel S, Nia AM, Kelm M, Jung C (2020) Comprehensive analysis of macrocirculation and microcirculation in microgravity during parabolic flights. Front Physiol 11:960. https://doi.org/10.3389/fphys.2020.00960

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloomfield SA (2020) Bone loss. In: Young LR, Sutton JP (eds) Handbook of bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_95-2

    Chapter  Google Scholar 

  • Blottner D, Salanova M (2015) The neuromuscular system: from earth to space life sciences, SpringerBriefs in space life sciences. Springer, Cham

    Book  Google Scholar 

  • Blüm V (2003) Aquatic modules for bioregenerative life support systems: developmental aspects based on the space flight results of the C.E.B.A.S. mini-module. Adv Space Res 48:792–798

    Google Scholar 

  • Bogaerts A, Delecluse C, Claessens AL, Coudyzer W, Boonen S, Verschueren SMP (2007) Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men: a 1-year randomized controlled trial. J Gerontol A Biol Sci Med Sci 62:630–635. https://doi.org/10.1093/gerona/62.6.630

    Article  PubMed  Google Scholar 

  • Boyle R, Hughes-Fulford M (2020) Space biology (cells to amphibians). In: Young LR, Sutton JP (eds) Handbook of bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_39-2

    Chapter  Google Scholar 

  • Braun M, Limbach C (2006) Rhizoids and protonemata of characean algae: model cells for research on polarized growth and plant gravity sensing. Protoplasma 229:133–142

    Article  CAS  PubMed  Google Scholar 

  • Braun M, Böhmer M, Häder DP, Hemmersbach R, Palme K (2018) Gravitational biology I: Gravity sensing and graviorientation in microorganisms and plants, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93894-3

    Book  Google Scholar 

  • Braun N, Binder S, Grosch H, Theek C, Ülker J, Tronnier H, Heinrich U (2019a) Current data on effects of long-term missions on the International Space Station on skin physiological parameters. Skin Pharmacol Physiol 32:43–51

    Article  PubMed  Google Scholar 

  • Braun N, Thomas S, Tronnier H, Heinrich U (2019b) Self-reported skin changes by a selected number of astronauts after long-duration mission on ISS as part of the Skin B project. Skin Pharmacol Physiol 32:52–57. https://doi.org/10.1159/000494689

    Article  PubMed  Google Scholar 

  • Brümmer V, Schneider S, Abel T, Vogt T, Strüder HK (2011) Brain cortical activity is influenced by exercise mode and intensity. Med Sci Sports Exerc 43:1863–1872

    Article  PubMed  CAS  Google Scholar 

  • Buchheim JI, Hoskyns S, Moser D, Han B, Deindl E, Hörl M, Moser D, Biere K, Feuerecker M, Schelling G, Thieme D, Kaufmann I, Thiel M, Choukèr A (2018) Oxidative burst and dectin-1-triggered phagocytosis affected by norepinephrine and endocannabinoids: implications for fungal clearance under stress. Int Immunol 30:79–89

    Google Scholar 

  • Buchheim JI, Matzel S, Rykova M, Vassilieva G, Ponomarev S, Nichiporuk I, Hörl M, Moser D, Biere K, Feuerecker M, Schelling G, Thieme D, Kaufmann I, Thiel M, Choukèr A (2019) Stress related shift toward inflammaging in cosmonauts after long-duration space flight. Front Physiol. https://doi.org/10.3389/fphys.2019.00085

  • Buchheim JI, Crucian B, Choukèr A (2020) Immunology. In: Young LR, Sutton JP (eds) Handbook of bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_23-2

  • Caiozzio VJ, Baldwin KM (2020) Muscle wasting in space and countermeasures. In: Young LR, Sutton JP (eds) Handbook of bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_70-1

    Chapter  Google Scholar 

  • Cappuccio FP (2013) Cardiovascular and other effects of salt consumption. Kidney Int Suppl 3(4):312–315. https://doi.org/10.1038/kisup.2013.65

    Article  CAS  Google Scholar 

  • Cheron G, Leroy A, De Saedeleer C, Bengoetxea A, Lipshits M, Cebolla A, Servais L, Dan B, Berthoz A, McIntyre J (2006) Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction. Brain Res 1121:104–116. https://doi.org/10.1016/j.brainres.2006.08.098

    Article  CAS  PubMed  Google Scholar 

  • Choukèr A (2020) Stress challenges and immunity in space – from mechanisms to monitoring and preventive strategies, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Choukèr A, Stahn AC (2020) COVID-19 - the largest isolation study in history: the value of shared learnings from spaceflight analogs. NPJ Microgravity 6:32. https://doi.org/10.1038/s41526-020-00122-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choukèr A, Ullrich O (2016) The immune system in space: are we prepared? SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-41466-9

    Book  Google Scholar 

  • Choukèr A, Kaufmann I, Kreth S, Hauer D, Feuercker M, Thieme D, Vogeser M, Thiel M, Schelling G (2010) Motion sickness, stress and the endocannabinoid system. PLoS One 5:e10752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarke AH (2008) Listing’s plane and the otolith-mediated gravity vector. Progr Brain Res 171:291–294

    Article  Google Scholar 

  • Clarke AH (2017) Vestibulo-oculomotor research in space, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-59933-5

    Book  Google Scholar 

  • Clarke AH, Schönfeld U (2015) Modification of unilateral otolith responses following spaceflights. Exp Brain Res 233:3613–3624

    Article  PubMed  Google Scholar 

  • Clarke AH, Just K, Krzok W, Schönfeld U (2013) Listing’s plane and the 3D-VOR in microgravity – the role of the otolith afferences. J Vestib Res 23:61–70

    Article  PubMed  Google Scholar 

  • Claus H, Akca E, Debaerdemaeker T, Evrard C, Declercq JP, König H (2002) Primary structure of selected archaeal mesophilic and extremely thermophilic outer surface layer proteins. Syst Appl Microbiol 25:3–12. https://doi.org/10.1078/0723-2020-00100

    Article  CAS  PubMed  Google Scholar 

  • Clément G, Ngo-Anh JT (2013) Space physiology II: Adaptation of the central nervous system to space flight - past, current, and future studies. Eur J Appl Physiol 113:1655–1672

    Article  PubMed  Google Scholar 

  • Cochrane DJ (2011) Vibration exercise: the potential benefits. Int J Sports Med 32:75–99

    Article  CAS  PubMed  Google Scholar 

  • Convertino VA, Ryan KL, Rickards CA, Glorsky SL, Idris AH, Yannopoulos D, Metzger A, Lurie KG (2011) Optimizing the respiratory pump: harnessing inspiratory resistance to treat systemic hypotension. Respir Care 56:846–857

    Article  PubMed  PubMed Central  Google Scholar 

  • Cottin H, Rettberg P (2019) EXPOSE-R2 on the International Space Station. Astrobiology 19(8). https://doi.org/10.1089/ast.2019.0625

  • Cottin H, Kotler JM, Bartik K, Cleaves HJ, Cockell CS, de Vera JP, Ehrenfreund P, Leuko S, Ten Kate IL, Martins Z, Pascal R, Quinn R, Rettberg P, Westall F (2015) Astrobiology and the possibility of life on Earth and elsewhere. Space Sci Rev 209:1–42

    Article  Google Scholar 

  • Cottin H, Kotler JM, Billi D, Cockell C, Demets R, Ehrenfreund P, Elsaesser A, d’Hendecourt K, van Loon JWA, Martins Z, Onofri S, Quinn RC, Rabbow E, Rettberg P, Ricco AJ, Slenzka K, de la Torre R, de Vera JP, Westall F, Carrasco N, Fresneau A, Kawaguchi Y, Kebukawa Y, Nguyen D, Poch O, Saiagh K, Stalport F, Yamagishi A, Yano A, Klamm BA (2017) Space as a tool for astrobiology: review and recommendations for experimentations in Earth orbit and beyond. Space Sci Rev 209:83–181. https://doi.org/10.1007/s11214-017-0365-5

    Article  Google Scholar 

  • Crandall CG, Johnson JM, Convertino VA, Raven PB, Engelke KA (1994) Altered thermoregulatory responses after 15 days of head-down tilt. J Appl Physiol 77:1863–1867. https://doi.org/10.1152/jappl.1994.77.4.1863

    Article  CAS  PubMed  Google Scholar 

  • Crucian BE, Choukèr A, Simpson RJ, Mehta S, Marshall G, Smith SM, Zwart SR, Heer M, Ponomarev S, Whitmire A, Frippiat JP, Douglas GL, Lorenzi H, Buchheim JI, Makedonas G, Ginsburg GS, Ott CM, Pierson DL, Krieger SS, Baecker N, Sams C (2018) Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Front Immunol. https://doi.org/10.3389/fimmu.2018.01437

  • De Vera JP (2020) Astrobiology on the International Space Station, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-61691-5

  • Demêmes D, Dechesne CJ, Ventéo S, Gaven F, Raymond J (2001) Development of the rat efferent vestibular system on the ground and in microgravity. Dev Brain Res 128:35–44. https://doi.org/10.1016/s0165-3806(01)00146-8

    Article  Google Scholar 

  • Demontis GC, Germani MM, Caiani EG, Barravecchia I, Passino C, Angeloni D (2017) Human pathophysiological adaptations to the space environment. Front Physiol. https://doi.org/10.3389/fphys.2017.00547

  • Dick R, Penzel T, Fietze I, Partinen M, Hein H, Schulz J (2010) AASM standards of practice compliant validation of actigraphy sleep analysis from SOMNOwatch™ versus polysomnographic sleep diagnostics shows high conformity also among subjects with sleep disordered breathing. Physiol Meas 31:1623–1633

    Article  CAS  PubMed  Google Scholar 

  • Dijk DJ, Neri DF, Wyatt JK, Ronda JM, Riel E, Ritz-De Cecco A, Hughes RJ, Elliott AR, Prisk GK, West JB, Czeisler CA (2001) Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol Regul Integr Comp Physiol 281:R1647–R1664. https://doi.org/10.1152/ajpregu.2001.281.5.R1647

    Article  CAS  PubMed  Google Scholar 

  • Dolch ME, Hummel T, Fetter V, Helwig A, Schelling G (2017) Electronic nose, functionality for breath gas analysis during parabolic flight. Microgr Sci Technol 29:201–207

    Article  CAS  Google Scholar 

  • Draeger J, Schwartz R, Groenhoff S, Stern C (1993) Self-tonometry under microgravity conditions. Clin Invest 71:700–703

    Article  CAS  Google Scholar 

  • Draeger J, Schwartz R, Groenhoff S, Stern C (1994) Self-tonometry during the German 1993 Spacelab D-2 mission. Ophthalmology 91:697–699

    CAS  Google Scholar 

  • Dreiner M, Willwacher S, Kramer A, Kümmel J, Frett T, Zaucke F, Liphardt AM, Gruber M, Niehoff A (2020) Short-term response of serum cartilage oligomeric matrix protein to different types of impact loading under normal and artificial gravity. Front Physiol 11:1032. https://doi.org/10.3389/fphys.2020.01032

    Article  PubMed  PubMed Central  Google Scholar 

  • Drummer C, Hesse C, Baisch F, Norsk P, Elmann-Larsen B, Gerzer R, Heer M (2000) Water and sodium balances and their relation to body mass changes in microgravity. Eur J Clin Investig 30:1066–1075

    Article  CAS  Google Scholar 

  • Edgerton VR, Roy RR, Recktenwald MR, Hodgson JA, Grindeland RE, Kozlovskaya I (2000) Neural and neuroendocrine adaptations to microgravity and ground-based models of microgravity. J Gravit Physiol 7:45–52

    CAS  PubMed  Google Scholar 

  • Ekkekakis P (2009) Let them roam free? Physiological and psychological evidence for the potential of self-selected exercise intensity in public health. Sports Med 39:857–888

    Article  PubMed  Google Scholar 

  • Ekkekakis P, Acevedo EO (2006) Affective responses to acute exercise: toward a psychobiological dose-response model. In: Acevedo EO, Ekkekakis P (eds) Psychobiology of physical activity. Human Kinetics, Champaign, IL, pp 91–109

    Google Scholar 

  • Evrard C, Declercq J-P, Debaerdemaeker T, König H (1999) The first successful crystallization of a prokaryotic extremely thermophilic outer surface layer glycoprotein. Z Krist 214:427–442

    CAS  Google Scholar 

  • Feuerecker M, Mayer W, Kaufmann I, Gruber M, Muckenthaler F, Yi B, Salam AP, Briegel J, Schelling G, Thiel M, Choukèr A (2012) A corticoid-sensitive cytokine release assay for monitoring stress-mediated immune modulation. Clin Exp Immunol. https://doi.org/10.1111/cei.12049

  • Feuerecker M, Sudhoff L, Crucian B, Pagel JI, Sams C, Strewe C, Guo A, Schelling G, Briegel J, Kaufmann I, Choukèr A (2018) Early immune anergy towards recall antigens and mitogens in patients at onset of septic shock. Sci Rep. https://doi.org/10.1038/s41598-018-19976-w

  • Feuerecker M, Mayer W, Gruber M, Muckenthaler F, Draenert R, Bogner J, Kaufmann I, Crucian B, Rykova M, Morukov B, Sams, C, Choukèr A (2019) Particular characterization of an in-vitro-DTH test to monitor cellular immunity – applications for patient care and space flight. https://ntrs.nasa.gov/citations/20130011428

  • Fietze I, Penzel T, Partinen M, Sauter J, Küchler G, Suvoro A, Hein H (2015) Actigraphy combined with EEG compared to polysomnography in sleep apnea patients. Physiol Meas 36:385

    Article  PubMed  Google Scholar 

  • Foldager N, Andersen TA, Jessen FB, Ellegaard P, Stadeager C, Videbaek R, Norsk P (1996) Central venous pressure in humans during microgravity. J Appl Physiol 81:408–412

    Article  CAS  PubMed  Google Scholar 

  • Fowler B, Manzey D (2000) Summary of research issues in monitoring of mental health and perceptual-motor performance and stress in space. Aviation Space Environ Med 71:A76–A77

    CAS  Google Scholar 

  • Frerichs I, Dudykevych T, Hinz J, Bodenstein M, Hahn G, Hellige G (2001) Gravity effects on regional lung ventilation determined by functional EIT during parabolic flights. J Appl Physiol 91:39–50

    Article  CAS  PubMed  Google Scholar 

  • Frerichs I, Pulletz S, Elke G, Zick G, Weiler N (2010) Electrical impedance tomography in acute respiratory distress syndrome. Open Nucl Med J 2:110–118

    Article  Google Scholar 

  • Freyler K, Weltin E, Gollhofer A, Ritzmann R (2014) Improved postural control in response to a 4-week balance training with partially unloaded bodyweight. Gait Posture 40:291–296

    Article  CAS  PubMed  Google Scholar 

  • Frings-Meuthen P, Baecker N, Heer M (2008) Low-grade metabolic acidosis may be the cause of sodium chloride-induced exaggerated bone resorption. J Bone Miner Res 23:517–524

    Article  CAS  PubMed  Google Scholar 

  • Frings-Meuthen P, Luchitskaya E, Jordan J, Tank J, Lichtinghagen R, Smith SC, Heer M (2020) Natriuretic peptide resetting in astronauts. Circulation 141:1593–1595

    Article  PubMed  Google Scholar 

  • Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, McKenna MJ, Meydan C, Mishra T, Nasrini J, Piening BD, Rizzardi LF, Sharma K, Siamwala JH, Taylor L, Vitaterna MH, Afkarian M, Afshinnekoo E, Ahadi S, Ambati A, Arya M, Bezdan D, Callahan CM, Chen S, Choi AMK, Chlipala GE, Contrepois K, Covington M, Crucian BE, De Vivo I, Dinges DF, Ebert DJ, Feinberg JI, Gandara JA, George KA, Goutsias J, Grills GS, Hargens AR, Heer M, Hillary RP, Hoofnagle AN, Hook VYH, Jenkinson G, Jiang P, Keshavarzian A, Laurie SS, Lee-McMullen B, Lumpkins SB, MacKay M, Maienschein-Cline MG, Melnick AM, Moore TM, Nakahira K, Patel HH, Pietrzyk R, Rao V, Saito R, Salins DN, Schilling JM, Sears DD, Sheridan CK, Stenger MB, Tryggvadottir R, Urban AE, Vaisar T, Van Espen B, Zhang J, Ziegler MG, Zwart SR, Charles JB, Kundrot CE, Scott GBI, Bailey SM, Basner M, Feinberg AP, Lee SMC, Mason CE, Mignot E, Rana BK, Smith SM, Snyder MP, Turek FW (2019) The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science. https://doi.org/10.1126/science.aau8650

  • Gerzer (2014) Salt balance: from space experiments to revolutionizing new clinical concepts on Earth – a historical review. Acta Astronaut 104:378–382

    Article  CAS  Google Scholar 

  • Goswami N (2017) Falls and fall prevention in older persons: geriatrics meets spaceflight. Front Physiol 8:603. https://doi.org/10.3389/fphys.2017.00603

    Article  PubMed  PubMed Central  Google Scholar 

  • Goswami N, White O, van Loon JJWA, Roessler A, Blaber AP (eds) (2020) Gravitational physiology, aging and medicine. Front Physiol. https://doi.org/10.3389/978-2-88963-273-2

  • Grimm D, Wehland M, Pietsch J, Aleshcheva G, Wise P, van Loon J, Ulbrich C, Magnusson NE, Infanger M, Bauer J (2017) Growing tissues in real and simulated microgravity: new methods for tissue engineering. Tissue Eng Part B 20:555–566. https://doi.org/10.1089/ten.TEB.2013.070

    Article  Google Scholar 

  • Groenhoff S, Draeger J, Deutsch C, Wiezorrek R, Hock B (1992) Self-tonometry: technical aspects of calibration and clinical application. Int Ophthalmol 16:299–303

    Article  CAS  PubMed  Google Scholar 

  • Gundel A, Polyakov VV, Zulley J (1997) The alteration of human sleep and circadian rhythms during spaceflight. J Sleep Res 6:1–8

    Article  CAS  PubMed  Google Scholar 

  • Gunga HC (2020) Am Tag zu heiss und nachts zu hell: Was unser Körper kann – und warum er heute überfordert ist. Rowohlt, Hamburg. ISBN 978-3-498-02540-3

    Google Scholar 

  • Gunga HC, Weller von Ahlefeld V, Appell Coriolano HJ, Werner A, Hoffmann U (2016) Cardiovascular system, red blood cells, and oxgen transport in microgravity, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-33226-0

    Book  Google Scholar 

  • Guo SS, Mao RX, Zhang LL, Tang YK, Li YH (2017) Progress and prospect of research on controlled ecological life support technique. REACH Rev Hum Space Explor 6:1–10

    Google Scholar 

  • Häder DP, Erzinger GS (2015) Advanced methods in image analysis as potent tools in online biomonitoring of water resources. Recent Top Pat Imaging 5:112–118

    Article  Google Scholar 

  • Häder DP, Hemmersbach R, Lebert M (2005) Gravity and the behavior of unicellular organisms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Häder DP, Braun M, Hemmersbach R (2018) Bioregenerative life support systems in space research. Gravitational biology I, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93894-3_8

    Book  Google Scholar 

  • Hanke WQ, Kohn FPM, Neef M, Hampp R (2018) Gravitational Biology II. Interaction of gravity with cellular components and cell metabolism, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-00596-2

    Book  Google Scholar 

  • Hauschild S, Tauber S, Lauber B, Thiel CS, Layer LE, Ullrich O (2014) T cell regulation in microgravity – the current knowledge from in vitro experiments conducted in space, parabolic flights and ground-based facilities. Acta Astronaut 104:365–377

    Article  Google Scholar 

  • Hauschild S, Tauber S, Lauber BA, Thiel CS, Layer LE, Ullrich O (2016) Cellular effects of altered gravity on the human adaptive immune system. In: The immune system in space: are we prepared? SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-41466-9_5

    Chapter  Google Scholar 

  • Heer M, Baisch F, Kropp J, Gerzer R, Drummer C (2000) High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Phys 278:F585–F595

    CAS  Google Scholar 

  • Heer M, Titze J, Smith SM, Baecker N (2015) Nutrition, physiology and metabolism in spaceflight and analog studies, SpringerBriefs in space life sciences. Springer, Cham

    Book  Google Scholar 

  • Hellweg CE, Berger T, Matthiä D, Baumstark-Khan C (2020) Radiation in space: relevance and risk for human missions, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-46744-9

    Book  Google Scholar 

  • Hilbig RW, Anken RH (2017) Impact of micro- and hypergravity on neurovestibular issues in fish. In: Sensory motor and behavioral research in space, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-68201-3_4

    Chapter  Google Scholar 

  • Holubarsch J, Helm M, Ringhof S, Gollhofer A, Freyler K, Ritzmann R (2019) Tumbling reactions in hypo and hyper gravity - muscle synergies are robust across different perturbations of human stance during parabolic flights. Sci Rep 9:10490. https://doi.org/10.1038/s41598-019-47091-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horneck G, Zell M (2012) The EXPOSE-E mission. Astrobiology 12(5). https://doi.org/10.1089/ast.2012.0831

  • Horneck G, Panitz C, Zell M (2015) Expose-R. Int J Astrobiol 14(1). https://doi.org/10.1017/51473550414000xxx

  • Horstmann M, Durante M, Johannes C, Pieper R, Obe G (2005) Space radiation does not induce a significant increase of intrachromosomal exchange in astronauts’ lymphocytes. Radiat Environ Biophys 44:219–224

    Article  CAS  PubMed  Google Scholar 

  • Ichijo T, Yamaguchi N, Tanigaki F, Shirakawa M, Nasu M (2016) Four-year bacterial monitoring in the international space station Japanese experiment module kibo with culture-independent approach. NPJ Microgravity 2. https://doi.org/10.1038/npjmgrav.2016.7

  • Ingber DE (2008) Tensegrity-based mechanosensing from macro to micro. Progr Biophys Mol Biol 97:163–179

    Article  Google Scholar 

  • Jamon M (2014) The development of vestibular system and related functions in mammals: impact of gravity. Front Integr Neurosci 8(11):1–13. https://doi.org/10.3389/fnint.2014.00011

    Article  Google Scholar 

  • Johannes B, Salnitski VP, Polyakov VV, Kirsch KA (2003) Changes in the autonomic reactivity pattern to psychological load under long-term microgravity—twelve men during 6-month spaceflights. Aviakosm Ekolog Med 37:6–16

    CAS  PubMed  Google Scholar 

  • Johannes B, Salnitski V, Soll H, Rauch M, Hoermann HJ (2008) De-individualized psychophysiological strain assessment during a flight simulation test—validation of a space methodology. Acta Astronaut 63:791–799

    Article  Google Scholar 

  • Johannes B, Sitev AS, Vinokhodova AG, Salnitski VP, Savchenko EG, Artyukhova AE, Bubeev YA, Morukov BV, Tafforin C, Basner M, Dinges DF, Rittweger J (2015) Wireless monitoring of changes in crew relations during long-duration mission simulation. PLoS One. https://doi.org/10.1371/journal.pone.0134814

  • Johannes B, Salnitski V, Dudukin A, Shevchenko L, Bronnikov S (2016a) Performance assessment in the PILOT experiment on board space station MIR and ISS. Aerospace Med Hum Perf 87:534–544

    Article  Google Scholar 

  • Johannes B, Bernius P, Lindemann J, Kraus de Camargo O, Oerter R (2016b) Feasibility study using in-water EEG measurement during dolphin assisted therapy (DAT). Int J Clin Psychiatry 4:17–25

    Google Scholar 

  • Johnson CM, Subramanian A, Pattathil S, Correll MJ, Kiss JZ (2017) Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight. Am J Bot 104(8):1219–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston SL, Campbell MR, Scheuring R, Feiveson AH (2010) Risk of herniated nucleus pulposus among U.S. astronauts. Aviat Space Environ Med 81:566–574

    Article  PubMed  Google Scholar 

  • Kanas N (2020) Crewmember interactions in space. In: Young LR, Sutton JP (eds) Handbook of bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_33-2

    Chapter  Google Scholar 

  • Kaufmann I, Draenert R, Gruber M, Feuerecker M, Roider J, Choukèr A (2013) A new cytokine release assay: a simple approach to monitor the immune status of HIV-infected patients. Infection. https://doi.org/10.1007/s15010-013-0445-8

  • Kern P (2009) Biological life support systems. In: Ley W, Wittmann K, Hallmann W (eds) Handbook of space technology. Wiley, Hoboken, NJ

    Google Scholar 

  • Kirsch KA, Röcker L, Gauer OH, Krause R (1984) Venous pressure in man during weightlessness. Science 225:218–219

    Article  CAS  PubMed  Google Scholar 

  • Kirsch KA, Haenel F, Röcker L (1986) Venous pressure in microgravity. Naturwissenschaften 73:447–449

    Article  CAS  PubMed  Google Scholar 

  • Kiss JZ, Wolverton C, Wyatt SE, Hasenstein KH, Loon JJWA (2019) Comparison of microgravity analogs to spaceflight in studies of plant growth and development. Front Plant Sci 10:1577. https://doi.org/10.3389/fpls.2019.01577

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitada K, Daub S, Zhang Y, Klein JD, Nakano D, Pedchenko T, Lantier L, LaRocque L, Marton A, Neubert P, Schröder A, Rakova N, Jantsch J, Dikalova AE, Dikalov SI, Harrison DC, Müller DN, Nishiyama A, Rauh M, Harris RC, Luft FC, Wasserman DH, Sands J, Titze J (2017) High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Invest 127:1944–1959

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein T, Wollseiffen P, Sanders M, Claassen J, Carnahan H, Abeln V, Vogt T, Strüder HK, Schneider S (2019) The influence of microgravity on cerebral blood flow and electrocortical activity. Exp Brain Res 237:1057–1062. https://doi.org/10.1007/s00221-019-05490-6

    Article  PubMed  Google Scholar 

  • Klein T, Sanders M, Wollseiffen P, Carnahan H, Abeln V, Askew CD, Claassen JA, Schneider S (2020) Transient cerebral blood flow responses during microgravity. Life Sci Space Res 25:66–71. https://doi.org/10.1016/j.lssr.2020.03.003

    Article  Google Scholar 

  • Klukas O, Schubert W-D, Jordan P, Krauß N, Fromme P, Witt HT, Saenger W (1999) Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. J Biol Chem 274:7351–7360

    Article  CAS  PubMed  Google Scholar 

  • Konda NN, Karri RS, Winnard A, Nasser M, Evetts S, Boudreau E, Caplan N, Gradwell D, Velho RM (2019) A comparison of exercise interventions from bed rest studies for the prevention of musculoskeletal loss. NPJ Microgravity 5:12. https://doi.org/10.1038/s41526-019-0073-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kopp C, Linz P, Wachsmuth L, Dahlmann A, Horbach T, Schöfl C, Renz W, Santoro D, Niendorf T, Müller DN, Neininger M, Cavallaro A, Eckardt KU, Schmieder RE, Luft FC, Uder M, Titze J (2012) Na magnetic resonance imaging of tissue sodium. Hypertension 59:167–172

    Article  CAS  PubMed  Google Scholar 

  • Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Müller DN, Schmieder RE, Cavallaro A, Eckardt KU, Uder M, Luft FC, Titze J (2013) 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension 61:635–640

    Article  CAS  PubMed  Google Scholar 

  • Kopp C, Beyer C, Linz P, Dahlmann A, Hammon M, Jantsch J, Neubert P, Rosenhauer D, Müller DN, Cavallaro A, Eckardt KU, Schett G, Luft FC, Uder M, Distler JHW, Titze J (2017) Na+ deposition in the fibrotic skin of systemic sclerosis patients detected by 23Na-magnetic resonance imaging. Rheumatology 56:556–560

    Article  CAS  PubMed  Google Scholar 

  • Kopp C, Linz P, Maier C, Wabel P, Hammon M, Nagel AM, Rosenhauer D, Horn S, Uder M, Luft FC, Titze J, Dahlmann A (2018) Elevated tissue sodium deposition in patients with type 2 diabetes on hemodialyis detected by 23Na magnetic resonance imaging. Kidney Int 93:1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Krauspenhaar R, Rypniewski W, Kalkura N, Moore K, DeLucas L, Stoeva S, Mikhailov A, Voelter W, Betzel C (2002) Crystallisation under microgravity of mistletoe lectin I from Viscum album with adenine monophosphate and the crystal structure at 1.9 Å resolution. Acta Crystallogr D Biol Crystallogr 58:1704–1707

    Article  CAS  PubMed  Google Scholar 

  • Krauß N, Schubert W-D, Klukas O, Fromme P, Witt HT, Saenger W (1996) Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Mol Biol 3:965–973

    Article  Google Scholar 

  • Krüger M, Bauer J, Grimm D (2017) Cancer research in space. In: Ruyters G, Betzel C, Grimm D (eds) Biotechnology in space, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-64054-9_7

    Chapter  Google Scholar 

  • Krüger M, Melnik D, Kopp S, Buken C, Sahana J, Bauer J, Wehland M, Hemmersbach R, Corydon TJ, Infanger M, Grimm D (2019) Fighting thyroid cancer with microgravity research. Int J Mol Sci 20:2553. https://doi.org/10.3390/jims20102553

    Article  PubMed Central  Google Scholar 

  • Lang JM, Coil DA, Neches RY, Brown WE, Cavalier D, Severance M, Hampton-Marcell JT, Gilbert JA, Eisen JA (2017a) A microbial survey of the International Space Station (ISS). PeerJ 5:e4029. https://doi.org/10.7717/peerj.4029

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang T, van Loon JJWA, Bloomfield S, Vico L, Chopard A, Rittweger J, Kyparos A, Blottner D, Vuori I, Gerzer R, Cavanagh PR (2017b) Towards human exploration of space: the THESEUS review series on muscle and bone research priorities. NPJ Microgravity 3:8. https://doi.org/10.1038/s41526-017-0013-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Ledderhos C, Rothe S, Gens A, Johannes B (2010) Objective psycho-physiological strain assessment of AWACS crews in simulators and real flight operations. In: Federal Ministry of Defense (ed) Annual military scientific research report 2009, pp 76–77

    Google Scholar 

  • Lee AG, Mader TH, Gibson CR, Tarver W, Rabiei P, Riascos RF, Galdamez LA, Brunstetter T (2020a) Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update. NPJ Microgravity 6. https://doi.org/10.1038/s41526-020-0097-9

  • Lee S-J, Lehar A, Meir JU, Koch C, Morgan A, Warren LE, Rydzik R, Youngstrom DW, Chandok H, George J, Gogain J, Michaud M, Stoklased TA, Liu Y, Germain-Lee EL (2020b) Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.2014716117

  • Liphardt A-M, Mündermann A, Andriacchi TP, Achtzehn S, Heer M, Mester J (2018) Sensitivity of serum concentration of cartilage biomarkers to 21-days of bed rest. J Orthop Res 36:1465–1471. https://doi.org/10.1002/jor.23786

    Article  CAS  PubMed  Google Scholar 

  • Littke W, John C (1984) Protein single crystal growth under microgravity. Materials 225:203–204. https://doi.org/10.1126/science.225.4658.203

    Article  CAS  Google Scholar 

  • Machnik A, Nehofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, Park JK, Beck FX, Müller DN, Derer W, Goss J, Ziomber A, Dietsch P, Wagner H, van Rooijen N, Kurtz A, Hilgers KF, Alitalo K, Eckardt KU, Luft FC, Kerjaschi D, Titze J (2009) Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering system. Nat Med 15:545–552

    Article  CAS  PubMed  Google Scholar 

  • Manzey D (2000) Monitoring of mental performance during spaceflight. Aviat Space Environ Med 71:A69–A75

    CAS  PubMed  Google Scholar 

  • Martins Z, Cottin H, Kotler JM, Carrasco N, Cockell CS, de la Torre Noetzel R, Demets R, de Vera JP, d’Hendecourt L, Ehrenfreund P, Elsaesser A, Foing B, Onofri S, Quinn R, Rabbow E, Rettberg P, Ricco AJ, Slenzka K, Stalport F, ten Kate IL, van Loon JJWA, Westall F (2017) Earth as a tool for astrobiology - a European perspective. Space Sci Rev 209:43–81. https://doi.org/10.1007/s11214-017-0369-1

    Article  Google Scholar 

  • Martirosyan A, DeLucas LJ, Schmidt C, Perbandt M, McCombs D, Cox M, Radka C, Betzel C (2019) Effect of macromolecular mass transport in microgravity protein crystallization. Gravit Space Res 7:1. https://doi.org/10.2478/gsr-2019-0005

    Article  Google Scholar 

  • Matia I, Gonzales-Camacho F, Herranz R, Kiss JZ, Gasset G, van Loon JJWA, Marco R, Medina FX (2010) Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. J Plant Physiol 167:184–193. https://doi.org/10.1016/j.jplph.2009.08.012

    Article  CAS  PubMed  Google Scholar 

  • McPherson A, De Lucas LJ (2015) Microgravity protein crystallization. NPJ Microgravity 1:15010. https://doi.org/10.1038/npjmgrav.2015.10

    Article  PubMed  PubMed Central  Google Scholar 

  • Mermel LA (2013) Infection prevention and control during prolonged human space travel. Clin Infect Dis 56:123–130

    Article  PubMed  Google Scholar 

  • Mester J, Kleinöder H, Yue Z (2006) Vibration training: benefits and risks. J Biomech 39:1056–1065

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Rypniewski W, Szymański M, Voelter W, Barciszewski J, Betzel C (2008) Structure of mistletoe lectin I from Viscum album in complex with the phytohormone zeatin. Biochim Biophys Acta 1784:1590–1595

    Article  CAS  PubMed  Google Scholar 

  • Mora M, Wink L, Kögler I, Mahnert A, Rettberg P, Schwendner P, Demets R, Cockell C, Alekhova T, Klingl A, Krause R, Zolotariof A, Alexandrova A, Moissl-Eichinger C (2019) Space station conditions are selective but do not alter microbial characteristics relevant to human health. Nat Commun 10:3990. https://doi.org/10.1038/s41467-019-11682-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthert LWF, Izzo LG, van Zanten M, Aronne G (2020) Root tropisms: investigations on Earth and in space to unravel plant growth direction. Front Plant Sci 10:1807. https://doi.org/10.3389/fpls.2019.01807

    Article  PubMed  PubMed Central  Google Scholar 

  • Narici MV, de Boer MD (2011) Disuse of the musculo-skeletal system in space and on Earth. Eur J Appl Physiol 111:403–420

    Article  CAS  PubMed  Google Scholar 

  • Nassef MZ, Kopp S, Weland M, Melnik D, Sahana J, Krüger M, Corydon TJ, Oltmann H, Schmitz B, Schütte A, Bauer TJ, Infanger M, Grimm D (2019) Real microgravity influences the cytoskeleton and focal adhesions in human breast cancer cells. Int J Mol Sci 20:3156. https://doi.org/10.3390/ijms20135156

    Article  CAS  PubMed Central  Google Scholar 

  • Niehoff A, Brüggemann GP, Zaucke F, Koo S, Mester J, Liphardt AM (2016) Long-duration space flight and cartilage adaptation: first results on changes in tissue metabolism. Osteoarthr Cartil 24(Suppl. 1):14–145. https://doi.org/10.1016/j.joca.2016.01.282

    Article  Google Scholar 

  • Norsk P (2020) Physiological effects of spaceflight – weightlessness: an overview. In: Young LR, Sutton JP (eds) Handbook of bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_126-2

    Chapter  Google Scholar 

  • Novikova ND (2004) Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microb Ecol 47:127–132

    Article  CAS  PubMed  Google Scholar 

  • Novikova N, De Boever P, Poddbko S, Deshevaya E, Polikarpov N, Rakova N, Coninx I, Mergeay M (2006) Survey of environmental biocontamination on board the International Space Station. Res Microbiol 157:5–12

    Article  PubMed  Google Scholar 

  • Paul AL, Sng NJ, Zupanska AK, Krishnamurthy A, Schultz ER, Ferl RJ (2017) Genetic dissection of the Arabidopsis spaceflight transcriptome: are some responses dispensable for the physiological adaptation of plants to spaceflight? PLoS One. https://doi.org/10.1371/journal.pone.0180186

  • Paulsen K, Tauber S, Dumrese C, Bradacs G, Simmet DM, Gölz N, Hauschild S, Raig C, Engeli S, Gutewort A, Hürlimann E, Biskup J, Unverdorben F, Rieder G, Hofmänner D, Mutschler L, Krammer S, Buttron I, Philpot C, Huge A, Lier H, Barz I, Engelmann F, Layer LE, Thiel CS, Ullrich O (2015) Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity. Biomed Res Int. https://doi.org/10.1155/2015/538786

  • Pavy Le Traon A, Heer M, Narici MV, Rittweger J (2007) From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101:143–194

    Article  CAS  PubMed  Google Scholar 

  • Penzel T, Kantelhardt JW, Bartsch RP, Riedl M, Kraemer JF, Wessel N, Garcia C, Glos M, Fietze I, Schöbel C (2016) Modulations of heart rate, ECG, and cardio-respiratory coupling observed in polysomnography. Front Physiol. https://doi.org/10.3389/fphys.2016.00460

  • Petit G, Cebolla AM, Fattinger S, Petieau M, Summerer L, Cheron G, Huber R (2019) Local sleep-like events during wakefulness and their relationship to decreased alertness in astronauts on ISS. NPJ Microgravity 10. https://doi.org/10.1038/s41526-019-0069-0

  • Prasad B, Richter P, Vadakedath N, Mancinelli R, Krüger M, Strauch S, Grimm D, Darriet P, Chapel J-P, Cohen J, Lebert M (2020) Exploration of space to achieve scientific breakthroughs. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2020.107572

  • Preston LJ, Rothschild LJ (2020) Astrobiology: an overview. In: Young LR, Sutton JP (eds) Handbook of bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_119-2

    Chapter  Google Scholar 

  • Prisk K (2014) Microgravity and the respiratory system. Eur Respir J 43:1459–1471

    Article  PubMed  Google Scholar 

  • Rakova N, Jüttner K, Dahlmann A, Schröder A, Linz P, Kopp C, Rauh M, Goller U, Beck L, Agureev A, Vassilieva G, Lenkova L, Johannes B, Wabel P, Moissl U, Vienken J, Gerzer R, Eckardt KU, Müller DN, Kirsch K, Morukov B, Luft FC, Titze J (2013) Long-term space flight simulation reveals infradian rhythmicity in human Na+ balance. Cell Metab 17:125–131

    Article  CAS  PubMed  Google Scholar 

  • Rakova N, Kitada K, Lerchl K, Dahlmann A, Birukov A, Daub S, Kopp C, Pedchenko T, Zhang Y, Beck L, Johannes B, Marton A, Müller DN, Rauh M, Luft FC, Titze J (2017) Increased salt consumption induces body water conservation and decreases fluid intake. J Clin Invest 127:1932–1943

    Article  PubMed  PubMed Central  Google Scholar 

  • Rennie MJ, Selby A, Atherton P, Smith K, Kumar V, Glover EL, Philips SM (2010) Facts, noise and wishful thinking: muscle protein turnover in aging and human disuse atrophy. Scand J Med Sci Sports 20:5–9. https://doi.org/10.1111/j.1600-0838.2009.00967.x

    Article  CAS  PubMed  Google Scholar 

  • Reschke MF, Bloomberg JJ, Harm DL, Paloski WH (1994) Space flight and neurovestibular adaptation. J Clin Pharm 34:609–617

    Article  CAS  Google Scholar 

  • Risin D, Stepaniak PC (2013) Biomedical results of the space shuttle program. NASA SP-2013-607

    Google Scholar 

  • Ritzmann R, Kramer A, Bernhardt S, Gollhofer A (2014) Whole body vibration training – improving balance control and muscle endurance. PLoS One 26:e89905

    Article  CAS  Google Scholar 

  • Ritzmann R, Freyler K, Weltin E, Krause A, Gollhofer A (2015) Load dependency of postural control – kinematic and neuromuscular changes in response to over and under load conditions. PLoS One 10(6):e0128400. https://doi.org/10.1371/journal.pone.0128400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritzmann R, Freyler K, Krause A, Gollhofer A (2016) Bouncing on Mars and the Moon - the role of gravity on neuromuscular control: correlation of muscle activity and rate of force development. J Appl Physiol 121(5):1187–1195. https://doi.org/10.1152/japplphysiol.00692.2016

    Article  PubMed  Google Scholar 

  • Ritzmann R, Gollhofer A, Freyler K (2017) Posture and locomotion. In: Hilbig R, Gollhofer A, Bock O, Manzey D (eds) Sensory motor and behavioral research in space, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.3389/fphys.2019.00576

    Chapter  Google Scholar 

  • Ritzmann R, Freyler K, Helm M, Holubarsch J, Gollhofer A (2019) Stumbling reactions in partial gravity - neuromechanics of compensatory postural responses and inter-limb coordination during perturbation of human stance. Front Physiol 10:576. https://doi.org/10.3389/fphys.2019.00576

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts DR, Stahn AC, Seidler RD, Wuyts FL (2020) Towards understanding the effects of spaceflight on the brain. Lancet Neurol 19(10):808. https://doi.org/10.1016/S1474-4422(20)30304-5

    Article  PubMed  Google Scholar 

  • Ronca AE, Moyer EL, Talyansky Y, Lowe M, Padmanabhan S, Choi S, Gong C, Cadena SM, Stodieck L, Globus RK (2019) Behavior of mice aboard the International Space Station. Sci Rep 9:4717. https://doi.org/10.1038/s41598-019-40789-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosnet E, Le Scanff C, Sagal MS (2000) How self-image and personality influence performance in an isolated environment. Environ Behav 32:18–31

    Article  CAS  PubMed  Google Scholar 

  • Ruyters G, Braun M (2014) Plant biology in space: recent accomplishments and recommendations for future research. Plant Biol 16(Suppl 1):4–11. https://doi.org/10.1111/plb.12127

    Article  PubMed  Google Scholar 

  • Ruyters G, Stang S (2016) Space medicine 2025 – a vision. REACH Rev Hum Space Explor 1:55–62

    Google Scholar 

  • Ruyters G, Betzel C, Grimm D (2017) Biotechnology in space, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-64054-9

    Book  Google Scholar 

  • Sandal G, Leon G, Palinkas L (2006) Human challenges in polar and space environments. Rev Environ Sci Biotechnol 5:281–296

    Article  Google Scholar 

  • Sandler H, Vernikos J (1986) Inactivity: physiological effects. Academic, New York

    Google Scholar 

  • Sandonà D, Desaphy JF, Camerino GM, Bianchini E, Ciciliot S, Danieli-Betto D, Dobrowolny G, Furlan S, Germinario E, Goto K, Gutsmann M, Kawano F, Nakai N, Ohira T, Ohno Y, Picard A, Salanova M, Schiffl G, Blottner D, Musarò A, Ohira Y, Betto R, Conte D, Schiaffino S (2012) Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission. PLoS One 7(3). https://doi.org/10.1371/journal.pone.0033232

  • Scherer H, Brandt U, Clarke AH, Merbold U, Parker R (1986) European vestibular experiments on the Spacelab-1 mission. Exp Brain Res 64:255–263

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Guardiera S, Abel T, Carnahan H, Strüder H (2009) Artificial gravity results in changes in frontal lobe activity measured by EEG tomography. Brain Res 1285:119–126. https://doi.org/10.1016/j.brainres.2009.06.026

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Abeln V, Carnahan H, Kleinert J, Piacentini MF, Meeusen R, Strüder H (2010) Exercise as a countermeasure to psycho-physiological deconditioning during long-term confinement. Behav Brain Res 211:208–214. https://doi.org/10.1016/j.bbr.2010.03.034

    Article  PubMed  Google Scholar 

  • Schneider S, Abeln V, Popova J, Fomina E, Jacubowski A, Meeusen R, Strüder H (2013) The influence of exercise on prefrontal cortex activity and cognitive performance during a simulated space flight to Mars (MARS500). Behav Brain Res 236:1–7. https://doi.org/10.1016/j.bbr.2012.08.022

    Article  PubMed  Google Scholar 

  • Schubert D (2018) System analysis of plant production in greenhouse modules as an integrated part of planetary habitats. PhD thesis, University Bremen

    Google Scholar 

  • Seibert FS, Bernhard F, Sterbo U, Vairavanathan S, Bauer F, Rohn B, Pagonas N, Babel N, Jankowski J, Westhoff TH (2018) The effect of microgravity on central aortic blood pressure. Am J Hypertension 31:1183. https://doi.org/10.1093/ajh/hpy119

    Article  Google Scholar 

  • Shelhamer M, Bloomberg J, LeBlanc A, Prisk GK, Sibonga J, Smith SM, Zwart SR, Norsk P (2020) Selected discoveries from human research in space that are relevant to human health on Earth. NPJ Microgravity 6:5. https://doi.org/10.1038/s41526-020-0095-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Sitja-Rabert M, Rigau Comas D, Fort Vanmeerhaeghe A, Santoyo Medina C, Roqué i Figuls M, Romero-Rodríguez D, Bonfill Cosp X (2012) Whole-body vibration training for patients with neurodegenerative disease. Cochrane Database Syst Rev 2:CD009097. https://doi.org/10.1002/14651858.CD009097.pub2

    Article  Google Scholar 

  • Sobisch LY, Rogowski KM, Fuchs J, Schmieder W, Vaishampayan A, Oles P, Novikova N, Grohmann E (2019) Biofilm forming antibiotic resistant gram-positive pathogens isolated from surfaces on the International Space Station. Front Microbiol 19. https://doi.org/10.3389/fmicb.2019.00543

  • Soderpalm AC, Kroksmark AK, Magnusson P, Karlsson J, Tulinius M, Swolin-Eide D (2013) Whole body vibration therapy in patients with Duchenne muscular dystrophy - a prospective observational study. J Musculoskelet Neuronal Interact 13:13–18

    PubMed  Google Scholar 

  • Stahn AC, Werner A, Opatz O, Maggioni MA, Steinach M, von Ahlefeld VW, Moore AD Jr, Crucian BE, Smith SM, Zwart SR, Schlabs T, Mendt S, Trippel T, Koralewski E, Koch J, Chouker A, Reitz G, Shang P, Rocker L, Kirsch KA, Gunga HC (2017) Increased core body temperature in astronauts during long-duration space missions. Sci Rep 7:16180. https://doi.org/10.1038/s41598-017-15560-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strangman G, Gur RC, Basner M (2020) Cognitive performance in space. In: Young LR, Sutton JP (eds) Handbook of bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_70-1

    Chapter  Google Scholar 

  • Su S-H, Gibbs NM, Jancewicz AL, Masson PH (2017) Molecular mechanisms of root gravitropism. Curr Biol 27:R964–R972

    Article  CAS  PubMed  Google Scholar 

  • Sutton JP (2020) Clinical benefits of bioastronautics. In: Young LR, Sutton JP (eds) Handbook of bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_79-2

    Chapter  Google Scholar 

  • Tank J, Baevsky RM, Funtova II, Diedrich A, Slepchenkova IN, Jordan J (2011) Orthostatic heart rate responses after prolonged space flights. Clin Auton Res 21:121–124

    Article  PubMed  Google Scholar 

  • Tauber S, Ullrich O (2016) Cellular effects of altered gravity on the innate immune system and the endothelial barrier. In: The immune system in space: are we prepared? SpringerBriefs in space life sciences, Springer, Cham. https://doi.org/10.1007/978-3-319-41466-9_5

  • Thiel CS, de Zélicourt D, Tauber S, Adrian A, Franz M, Simmet DM, Schoppmann K, Hauschild S, Krammer S, Christen M, Bradacs G, Paulsen K, Wolf SA, Braun M, Hatton J, Kurtcuoglu V, Franke S, Tanner S, Christoforetti S, Sick B, Hock B, Ullrich O (2017) Rapid adaptation to microgravity in mammalian macrophage cells. Sci Rep 7:43. https://doi.org/10.1038/s41598-017-00119-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel CS, Tauber S, Lauber B, Polzer J, Seebacher C, Uhl R, Neelam S, Zhang Y, Levine H, Ullrich O (2019) Rapid morphological and cytoskeletal response to microgravity in human primary macrophages. Int J Mol Sci 20:2402. https://doi.org/10.3390/ijms20102402

    Article  CAS  PubMed Central  Google Scholar 

  • Titze J, Bauer K, Schafflhuber M (2005) Internal sodium balance in DOCA-salt rats: a body composition study. Am J Physiol Renal Physiol 289:793–802

    Article  CAS  Google Scholar 

  • Vallaza M, Banumathi S, Perbandt M, Moore K, DeLucas L, Betzel C, Erdmann VA (2002) Crystallization and structure analysis of Thermus flavus 5S rRNA helix B. Acta Crystallogr D Biol Crystallogr 58:1700–17003

    Article  CAS  Google Scholar 

  • Vallaza M, Perbandt M, Klussmann S, Rypniewski W, Einspahr HM, Erdmann VA, Betzel C (2004) First look at RNA in L-configuration. Acta Crystallogr Sect D 60:1–7

    Article  CAS  Google Scholar 

  • Vandenbrink JP, Herranz R, Medina FJ, Edelmann RE, Kiss JZ (2016) A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity. Planta 244:1201–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkateswaran K, La Duc MT, Horneck G (2014a) Microbial existence in controlled habitats and their resistance to space conditions. Microbes Environ. https://doi.org/10.1264/jsme2.ME14032

  • Venkateswaran K, Vaishampayan P, Cisneros J, Pierson DL, Rogers SO, Perry J (2014b) International space station environmental microbiome—microbial inventories of ISS filter debris. Appl Microbiol Biotechnol 98:6453–6466. https://doi.org/10.1007/s00253-014-5650-6

    Article  CAS  PubMed  Google Scholar 

  • Verbanck S, Larsson H, Linnarsson D, Prisk GK, West JB, Paiva M (1997) Pulmonary tissue volume, cardiac output, and diffusing capacity in sustained microgravity. J Appl Physiol 83:810–816

    Article  CAS  PubMed  Google Scholar 

  • Vernikos J (2020) Space and aging. In: Young LR, Sutton JP (eds) Handbook of bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_96-3

    Chapter  Google Scholar 

  • Vernikos J, Schneider VS (2010) Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review. Gerontology 56:157–166

    Article  PubMed  Google Scholar 

  • Videbaek R, Norsk P (1997) Atrial distension in humans during microgravity induced by parabolic flight. J Appl Physiol 83:1862–1866

    Article  CAS  PubMed  Google Scholar 

  • Voorhies AA, Ott CM, Mehta S, Pierson DL, Crucian BE, Feiveson A, Oubre CM, Torralba M, Moncera K, Zhang Y, Zurek E, Lorenzi HA (2019) Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Sci Rep 9:9911. https://doi.org/10.1038/s41598-019-46303-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner I, Braun M, Slenzka K, Posten C (2016) Photobioreactors in life support systems. Adv Biochem Eng Biotechnol 153:143–184. https://doi.org/10.1007/10_2015_327

    Article  CAS  PubMed  Google Scholar 

  • Walsh L, Schneider U, Fogtman A, Kausch C, McKenna-Lawlor S, Narici L, Ngo-Anh J, Reitz G, Sabatier L, Santin G, Sihver L, Straube U, Weber U, Durante M (2019) Research plans in Europe for radiation health hazard assessment in exploratory space missions. Life Sci Space Res 21:73–82

    Article  CAS  Google Scholar 

  • Weber J, Javelle F, Klein T, Foitschik T, Crucian B, Schneider S, Abeln A (2019) Neurophysiological, neuropsychological, and cognitive effects of 30 days of isolation. Exp Brain Res 237(6):1563–1573. https://doi.org/10.1007/s00221-019-05531-0

    Article  PubMed  Google Scholar 

  • Wehland M, Grimm D (2017) Tissue engineering in microgravity. In: Ruyters G, Betzel C, Grimm D (eds) Biotechnology in space, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-64054-9

    Chapter  Google Scholar 

  • Wheeler RM (2017) Agriculture for space: people and places paving the way. Open Agric 2:14–32

    Article  Google Scholar 

  • Wiederhold ML, Pedrozo HA, Harrison JL, Hejl R, Gao W (1997) Development of gravity-sensing organs in altered gravity conditions: opposite conclusions from an amphibian and a molluscan preparation. J Gravit Physiol 4:51–54

    Google Scholar 

  • Yamaguchi NB, Roberts M, Castro S, Ozbre C, Makimura K, Leys N, Grohmann E, Sugita T, Ichijo T, Nasu M (2014) Microbial monitoring of crewed habitats in space – current status and future perspectives. Microbes Environ. https://doi.org/10.1264/jsme2.ME14031

  • Zeidel ML (2017) Salt and water: not so simple. J Clin Invest 127:1625–1626

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruyters, G., Braun, M., Stang, K.M. (2021). Success Stories: Incremental Progress and Scientific Breakthroughs in Life Science Research. In: Breakthroughs in Space Life Science Research . SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-74022-1_3

Download citation

Publish with us

Policies and ethics