Mehmet Birikmen

Frankfurt, Hessen, Deutschland Kontaktinformationen
410 Follower:innen 404 Kontakte

Anmelden, um das Profil zu sehen

Aktivitäten

Anmelden, um alle Aktivitäten zu sehen

Berufserfahrung und Ausbildung

  • Eurofins PSS Insourcing Solutions

Gesamte Berufserfahrung von Mehmet Birikmen anzeigen

Jobbezeichnung, Beschäftigungsdauer und mehr ansehen.

oder

Wenn Sie auf „Weiter“ klicken, um Mitglied zu werden oder sich einzuloggen, stimmen Sie der Nutzervereinbarung, der Datenschutzrichtlinie und der Cookie-Richtlinie von LinkedIn zu.

Bescheinigungen und Zertifikate

Veröffentlichungen

  • Tracing Eukaryotic Ribosome Biogenesis Factors Into the Archaeal Domain Sheds Light on the Evolution of Functional Complexity

    Frontiers in Microbiology

    Ribosome assembly is an essential and carefully choreographed cellular process. In eukaryotes, several 100 proteins, distributed across the nucleolus, nucleus, and cytoplasm, co-ordinate the step-wise assembly of four ribosomal RNAs (rRNAs) and approximately 80 ribosomal proteins (RPs) into the mature ribosomal subunits. Due to the inherent complexity of the assembly process, functional studies identifying ribosome biogenesis factors and, more importantly, their precise functions and interplay…

    Ribosome assembly is an essential and carefully choreographed cellular process. In eukaryotes, several 100 proteins, distributed across the nucleolus, nucleus, and cytoplasm, co-ordinate the step-wise assembly of four ribosomal RNAs (rRNAs) and approximately 80 ribosomal proteins (RPs) into the mature ribosomal subunits. Due to the inherent complexity of the assembly process, functional studies identifying ribosome biogenesis factors and, more importantly, their precise functions and interplay are confined to a few and very well-established model organisms. Although best characterized in yeast (Saccharomyces cerevisiae), emerging links to disease and the discovery of additional layers of regulation have recently encouraged deeper analysis of the pathway in human cells. In archaea, ribosome biogenesis is less well-understood. However, their simpler sub-cellular structure should allow a less elaborated assembly procedure, potentially providing insights into the functional essentials of ribosome biogenesis that evolved long before the diversification of archaea and eukaryotes. Here, we use a comprehensive phylogenetic profiling setup, integrating targeted ortholog searches with automated scoring of protein domain architecture similarities and an assessment of when search sensitivity becomes limiting, to trace 301 curated eukaryotic ribosome biogenesis factors (RBFs) across 982 taxa spanning the tree of life and including 727 archaea. We show that both factor loss and lineage-specific modifications of factor function modulate ribosome biogenesis, and we highlight that limited sensitivity of the ortholog search can confound evolutionary conclusions. Projecting into the archaeal domain, we find that only few factors are consistently present across the analyzed taxa, and lineage-specific loss is common. While members of the Asgard group are not special with respect to their inventory of RBFs, they unite the highest number of orthologs to eukaryotic RBFs in one taxon.

    Veröffentlichung anzeigen
  • Molecular Epidemiology of Third-Generation-Cephalosporin-Resistant Enterobacteriaceae in Southeast Queensland, Australia

    Antimicrobial Chemotherapy

    Third-generation cephalosporin-resistant (3GC-R) Enterobacteriaceae represent a major threat to human health. Here, we captured 288 3GC-R Enterobacteriaceae clinical isolates from 264 patients presenting at a regional Australian hospital over a 14-month period. In addition to routine mass spectrometry and antibiotic sensitivity testing, isolates were examined using rapid (∼40-min) real-time PCR assays targeting the most common extended-spectrum β-lactamases (ESBLs; blaCTX-M-1 and blaCTX-M-9…

    Third-generation cephalosporin-resistant (3GC-R) Enterobacteriaceae represent a major threat to human health. Here, we captured 288 3GC-R Enterobacteriaceae clinical isolates from 264 patients presenting at a regional Australian hospital over a 14-month period. In addition to routine mass spectrometry and antibiotic sensitivity testing, isolates were examined using rapid (∼40-min) real-time PCR assays targeting the most common extended-spectrum β-lactamases (ESBLs; blaCTX-M-1 and blaCTX-M-9 groups, plus blaTEM, blaSHV, and an internal 16S rRNA gene control). AmpC CMY β-lactamase (blaCMY) prevalence was also examined. Escherichia coli (80.2%) and Klebsiella pneumoniae (17.0%) were dominant, with Klebsiella oxytoca, Klebsiella aerogenes, and Enterobacter cloacae infrequently identified. Ceftriaxone and cefoxitin resistance were identified in 97.0% and 24.5% of E. coli and K. pneumoniae isolates, respectively. Consistent with global findings in Enterobacteriaceae, most (98.3%) isolates harbored at least one β-lactamase gene, with 144 (50%) harboring blaCTX-M-1 group, 92 (31.9%) harboring blaCTX-M-9 group, 48 (16.7%) harboring blaSHV, 133 (46.2%) harboring blaTEM, and 34 (11.8%) harboring blaCMY genes. A subset of isolates (n = 98) were subjected to whole-genome sequencing (WGS) to identify the presence of cryptic resistance determinants and to verify genotyping accuracy. WGS of β-lactamase-negative or carbapenem-resistant isolates identified uncommon ESBL and carbapenemase genes, including blaNDM and blaIMP, and confirmed all PCR-positive genotypes. We demonstrate that our PCR assays enable the rapid and cost-effective identification of ESBLs in the hospital setting, which has important infection control and therapeutic implications.

    Veröffentlichung anzeigen
  • Using whole-genome sequencing and a pentaplex real-time PCR to characterize third-generation cephalosporin-resistant Enterobacteriaceae from Southeast Queensland, Australia

    bioRxiv - Cold Spring Harbor Laboratory

    Third-generation cephalosporin-resistant (3GC-R) Enterobacteriaceae represent a major threat to human health. Here, we captured 288 3GC-R Enterobacteriaceae clinical isolates from 258 patients presenting at a regional Australian hospital over a 14-month period. Alongside routine mass spectrometry speciation and antibiotic sensitivity testing, isolates were examined using a rapid (~40 min) pentaplex real-time PCR assay targeting the most common extended spectrum β-lactamases (ESBLs; CTX-M-1 and…

    Third-generation cephalosporin-resistant (3GC-R) Enterobacteriaceae represent a major threat to human health. Here, we captured 288 3GC-R Enterobacteriaceae clinical isolates from 258 patients presenting at a regional Australian hospital over a 14-month period. Alongside routine mass spectrometry speciation and antibiotic sensitivity testing, isolates were examined using a rapid (~40 min) pentaplex real-time PCR assay targeting the most common extended spectrum β-lactamases (ESBLs; CTX-M-1 and CTX-M-9 groups, plus TEM, SHV, and an internal 16S ribosomal DNA control). Additionally, AmpC CMY β-lactamase prevalence was examined using a singleplex PCR. A subset of isolates, including all 3GC-R isolates obtained from the intensive care unit, were subjected to whole-genome sequencing (WGS) to assess transmission dynamics, the presence of unidentified resistance determinants, and genotyping accuracy. Escherichia coli (80.2%) and Klebsiella pneumoniae (17.0%) were dominant, with Klebsiella oxytoca, Klebsiella aerogenes and Enterobacter cloacae infrequently identified. Ceftriaxone and cefoxitin resistance was identified in 97% and 24.5% of E. coli and K. pneumoniae isolates, respectively. Consistent with global findings in Enterobacteriaceae, the majority (98.3%) of isolates harbored at least one β-lactamase gene, with 144 (50%) encoding blaCTX-M-1 group, 92 (31.9%) blaCTX-M-9 group, 48 (16.7%) blaSHV, 133 (46.2%) blaTEM, and 34 (11.8%) blaCMY genes. WGS of β-lactamase negative or carbapenem-resistant isolates identified uncommon ESBLs and carbapenemases, including blaNDM and blaIMP, and confirmed all PCR-positive genotypes. No evidence of transmission among intensive care unit patients was identified. We demonstrate that our PCR assays enable the rapid and cost-effective identification of ESBLs in the hospital setting, which has important infection control and therapeutic implications.

    Veröffentlichung anzeigen

Auszeichnungen/Preise

  • Deutschlandstipendiat der Johann Wolfgang v. Goethe Universitaet

    Johann Wolfgang von Goethe Universitaet

  • Deutschlandstipendiat der Johann Wolfgang v. Goethe Universitaet

    Johann Wolfgang von Goethe Universitaet

    Finanzielle und ideelle Förderung des Deutschlandstipendiums für Studenten der Goethe Universität mit herausragenden universitären und auch sozialen Leistungen.

Weitere Aktivitäten von Mehmet Birikmen

Mehmet Birikmens vollständiges Profil ansehen

  • Herausfinden, welche gemeinsamen Kontakte Sie haben
  • Sich vorstellen lassen
  • Mehmet Birikmen direkt kontaktieren
Mitglied werden. um das vollständige Profil zu sehen

Weitere ähnliche Profile

Entwickeln Sie mit diesen Kursen neue Kenntnisse und Fähigkeiten