Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Dec;38(6):878-83.
doi: 10.1002/mrm.1910380605.

Energetics of 3.5 s neural activation in humans: a 31P MR spectroscopy study

Affiliations

Energetics of 3.5 s neural activation in humans: a 31P MR spectroscopy study

M Rango et al. Magn Reson Med. 1997 Dec.

Abstract

No direct information on brain energetics and energy-related compounds in the first seconds of physiological activation has been reported to date. In this study visual cortex high energy phosphate changes were monitored in 11 normal subjects during 3.5 s activation and the following 23.5 s by a simple 31P magnetic resonance spectroscopic method. An intraactivation decrease of phosphocreatine (PCr) was observed in all subjects, with changes in pH in three, one of them also presenting a change in adenosine triphosphate (ATP). In the subgroup of eight subjects without changes in pH, the mean rate of mean PCr decrease (D(PCr)) was 7.24 +/- 0.78%/s, and the postactivation mean rate of mean PCr recovery was <1/2 D(PCr). Short phasic neural activity requires a large amount of energy, i.e., at least three times basal consumption, in agreement with theoretical calculations. Additional energy demands in the visual cortex are several times those measured by positron emission tomography during prolonged stimulation studies, implying that mean energy requirements decrease with increases in duration of stimulation. During short activation, the vascular responses as detected by brain-mapping techniques (BMT) are preceded by an important reduction of the intracellular high-energy phosphate content, which returns to resting values during an interval that corresponds to the poststimulation return of BMT signals to baseline.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources