Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996:76:1-19.
doi: 10.1007/978-3-0348-8988-9_1.

Neural regulation of coronary vascular resistance: role of nitric oxide in reflex cholinergic coronary vasodilation in normal and pathophysiologic states

Affiliations
Review

Neural regulation of coronary vascular resistance: role of nitric oxide in reflex cholinergic coronary vasodilation in normal and pathophysiologic states

G Zhao et al. EXS. 1996.

Abstract

A number of reflexes participate in the control of coronary vascular resistance through activation of the sympathetic or parasympathetic nervous system. Classically, activation of vagal efferent fibers to the heart results in vasodilation due to the release of acetylcholine and activation of muscarinic receptors. Recently, we have found that activation of a number of reflexes in conscious dogs, the Bezold-Jarisch reflex and the carotid chemoreflex in particular, results in cholinergic coronary vasodilation which is blocked by an inhibitor of nitric oxide synthesis, nitro-L-arginine. After the development of pacing-induced heart failure, the cholinergic dilation subsequent to activation of the Bezold-Jarisch or carotid chemoreflex is essentially abolished, since coronary blood vessels no longer produce nitric oxide. In contrast, after brief exercise training, there is a potentiation of Bezold-Jarisch reflex-induced coronary vasodilation since exercise upregulates nitric oxide production by coronary blood vessels. Since the Bezold-Jarisch reflex may be important as a compensatory mechanism during acute myocardial infarction, and the carotid chemoreflex is the acute mechanisms responsible for ameliorating systemic hypoxemia, the role of nitric oxide in reflex cholinergic coronary vasodilation may be essential in the compensatory vascular adjustments evoked by these and other reflexes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms