Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 28:13:897801.
doi: 10.3389/fpsyt.2022.897801. eCollection 2022.

Dysregulated Methylation Patterns in Exon IV of the Brain-Derived Neurotrophic Factor (BDNF) Gene in Nicotine Dependence and Changes in BDNF Plasma Levels During Smoking Cessation

Affiliations

Dysregulated Methylation Patterns in Exon IV of the Brain-Derived Neurotrophic Factor (BDNF) Gene in Nicotine Dependence and Changes in BDNF Plasma Levels During Smoking Cessation

Kerim Abdelkhalek et al. Front Psychiatry. .

Abstract

Introduction: Several studies reported dysregulated protein levels of brain-derived neurotrophic factor (BDNF) in smokers and during cessation. However, the epigenetic regulation of the BDNF gene has not yet been investigated. We measured the plasma levels of BDNF and the epigenetic regulation of exon IV of the BDNF gene in smokers compared to healthy controls over a cessation period of 14 days.

Method: We measured BDNF plasma levels and BDNF promoter methylation in 49 smokers and 51 non-smokers at baseline, day 7, and day 14 of smoking cessation. Mean methylation levels of 11 Cytosine Guanosine dinucleotides of exon IV of the BDNF gene were determined via bisulfite sequencing.

Results: BDNF plasma and methylation levels were significantly lower in healthy controls when compared with smokers across all time points. BDNF levels for smokers decreased significantly during the cessation period. Comparing the sexes, female smokers showed significantly lower plasma BDNF levels than healthy controls at baseline and over 14 days of cessation. Male and female smokers showed significantly higher mean methylation rates than non-smokers at baseline. In male smokers, mean methylation levels decreased significantly during the cessation period.

Conclusion: Our findings replicate the findings of previous studies that BDNF plasma levels are altered in smokers. Furthermore, BDNF expression and gene methylation are altered during the first 14 days of cessation. Our novel findings of dysregulated methylation patterns in exon IV of the BDNF gene further support the thesis that BDNF plays a role in nicotine dependence.

Keywords: addict behavior; addiction; addiction - smoking; epigenetic; tobacco dependence.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
BDNF protein levels of male (A) and female (B) smokers at baseline, day 7 and day 14 of cessation vs. healthy controls. BDNF, brain-derived neurotrophic factor; CTRL, healthy controls; T0, first day of cessation; T7, day 7 of cessation; T14, day 14 of cessation. Significant differences are indicated by asterisks (P ≤ 0.05*).
Figure 2
Figure 2
Mean methylation levels of exon IV in BDNF gene of male and female smokers at baseline, day 7 and day 14 of cessation vs. healthy controls. BDNF, brain-derived neurotrophic factor; CTRL, healthy controls; T0, first day of cessation; T7, day 7 of cessation; T14, day 14 of cessation. Significant differences are indicated by asterisks (P ≤ 0.05*). BDNF protein levels of male (A) and female (B) smokers at baseline.

Similar articles

Cited by

References

    1. Reitsma MB, Kendrick PJ, Ababneh E, Abbafati C, Abbasi-Kangevari M, Abdoli A, et al. . Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet. (2021) 397:2337–60. 10.1016/S2468-2667(21)00102-X - DOI - PMC - PubMed
    1. Machaalani R, Chen H. Brain derived neurotrophic factor (BDNF), its tyrosine kinase receptor B (TrkB) and nicotine. Neurotoxicology. (2018) 65:186–95. 10.1016/j.neuro.2018.02.014 - DOI - PubMed
    1. Thoenen H. The changing scene of neurotrophic factors. Trends Neurosci. (1991) 14:165–70. 10.1016/0166-2236(91)90097-E - DOI - PubMed
    1. Apfel SC, Wright DE, Wiideman AM, Dormia C, Snider WD, Kessler JA. Nerve growth factor regulates the expression of brain-derived neurotrophic factor mRNA in the peripheral nervous system. Mol Cell Neurosci. (1996) 7:134–42. 10.1006/mcne.1996.0010 - DOI - PubMed
    1. Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. (2003) 4:299–309. 10.1038/nrn1078 - DOI - PubMed

LinkOut - more resources