Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun;25(2):84-91.
doi: 10.6065/apem.2040094.047. Epub 2020 Jun 30.

Minipuberty of human infancy - A window of opportunity to evaluate hypogonadism and differences of sex development?

Affiliations

Minipuberty of human infancy - A window of opportunity to evaluate hypogonadism and differences of sex development?

Christoffer Højrup Renault et al. Ann Pediatr Endocrinol Metab. 2020 Jun.

Abstract

Activation of the hypothalamic-pituitary-gonadal (HPG) axis happens in 3 phases during life. The first phase is during fetal life and is only separated from the second phase, called minipuberty, by the high concentration of placental hormones at birth. The third period of activation of the HPG axis is puberty and is well-described. Minipuberty consists of the neonatal activation of the HPG axis, mainly in the first 1-6 months, where the resulting high levels of gonadotropins and sex steroids induce the maturation of sexual organs in both sexes. With gonadal activation, testosterone levels rise in boys with peak levels after 1-3 months, which results in penile and testicular growth. In girls, gonadal activation leads to follicular maturation and a fluctuating increase in estrogen levels, with more controversy regarding the actual influence on the target tissue. The regulation of the HPG axis is complex, involving many biological and environmental factors. Only a few of these have known effects. Many details of this complex interaction of factors remain to be elucidated in order to understand the mechanisms underlying the first postnatal activation of the HPG axis as well as mechanisms shutting down the HPG axis, resulting in the hormonal quiescence observed between minipuberty and puberty. Minipuberty allows for the maturation of sexual organs and forms a platform for future fertility, but the long-term significance is still not absolutely clear. However, it provides a window of opportunity in the early detection of differences of sexual development, offering the possibility of initiating early medical treatment in some cases.

Keywords: Testosterone; Window of opportunity; Minipuberty.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest

No potential conflict of interest relevant to this article was reported.

Figures

Fig. 1.
Fig. 1.
(A) Male fetuses and infants. Serum LH, FSH, and testosterone concentrations throughout life in male subjects. In fetal life, placental hCG production stimulates the testosterone secretion in male fetuses during early gestation, and hereafter the fetal endogenous production of pituitary LH continues to stimulate the testosterone secretion which hereafter decreases concomitantly with FSH and LH levels towards birth. After birth LH, FSH, and testosterone increase in minipuberty with maximal levels at 1–2 months of age, followed by a significant suppression until puberty. (B) Female fetuses and infants. Serum LH, FSH, and estradiol increase in female fetuses midgestation which decreases by the end of gestation to very low levels. After birth FSH, LH, and estradiol increase at 1–2 months of age followed by slowly declining FSH, LH and fluctuating estradiol levels for 12–18 months. Females have higher FSH versus LH levels at all times compared to male fetuses and infants. LH, luteinizing hormone; FSH, follicle-stimulating hormone; hCG, human chorionic gonadotropin. Adapted from Lanciotti et al., Front Endocrinol (Lausanne) 2018;9:410 [14].

Similar articles

Cited by

References

    1. Aksglaede L, Sørensen K, Petersen JH, Skakkebaek NE, Juul A. Recent decline in age at breast development: the Copenhagen Puberty Study. Pediatrics. 2009;123:e932–9. - PubMed
    1. Sørensen K, Aksglaede L, Petersen JH, Juul A. Recent changes in pubertal timing in healthy Danish boys: associations with body mass index. J Clin Endocrinol Metab. 2010;95:263–70. - PubMed
    1. Eckert-Lind C, Busch AS, Petersen JH, Biro FM, Butler G, Bräuner EV, et al. Worldwide secular trends in age at pubertal onset assessed by breast development among girls: a systematic review and meta-analysis. JAMA Pediatr. 2020;174:e195881 - PMC - PubMed
    1. Winter JS. Hypothalamic--pituitary function in the fetus and infant. Clin Endocrinol Metab. 1982;11:41–55. - PubMed
    1. Massa G, de Zegher F, Vanderschueren-Lodeweyckx M. Serum levels of immunoreactive inhibin, FSH, and LH in human infants at preterm and term birth. Biol Neonate. 1992;61:150–5. - PubMed

LinkOut - more resources